Nuprl Lemma : sum-of-three-cubes-iff

This solution to the problem of writing 33 as the sum of three cubes
was found around March 9, 2019 by Andrew Booker using 15 core-years
computation time (over three weeks real time) on super-computer in Bristol.

The smallest number for which it is unknown whether it is the sum of three
cubes is now 42 (and the next is 114).⋅

k:ℕ
  (∃a,b,c:ℤ(((a a) (b b) (c c)) k ∈ ℤ)
  ⇐⇒ ∃d,n:ℕ
       ((↑is_power(3;((2 d) ((d d) (3 n))) k))
       ∨ (↑is_power(3;(((2 d) 1) (((d (d 1)) (3 (n 1))) 1)) k))))


Proof




Definitions occuring in Statement :  is_power: is_power(n;z) nat: assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q or: P ∨ Q nat_plus: + ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False sq_type: SQType(T) guard: {T} int_nzero: -o true: True nequal: a ≠ b ∈  exp: i^n primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) subtract: m remainder: rem m squash: T cand: c∧ B
Lemmas referenced :  sum-of-three-cubes-iff-4 istype-int int_subtype_base set_subtype_base le_wf istype-assert is_power_wf nat_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than subtract_wf istype-nat mod2-cases decidable__le intformand_wf intformle_wf itermVar_wf intformeq_wf itermMultiply_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma subtype_base_sq itermAdd_wf int_term_value_add_lemma mod2-is-zero mod2-is-one decidable__equal_int div-cancel2 nequal_wf istype-le assert-is_power add_nat_wf multiply_nat_wf equal_wf squash_wf true_wf istype-universe rem_invariant subtype_rel_self iff_weakening_equal bool_wf bool_subtype_base nat_plus_wf divide-exact rem-exact
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_pairFormation productElimination independent_functionElimination sqequalRule Error :productIsType,  because_Cache Error :equalityIstype,  baseApply closedConclusion baseClosed applyEquality isectElimination intEquality Error :lambdaEquality_alt,  natural_numberEquality Error :inhabitedIsType,  independent_isectElimination sqequalBase equalitySymmetry Error :unionIsType,  Error :dependent_set_memberEquality_alt,  setElimination rename unionElimination approximateComputation Error :dependent_pairFormation_alt,  Error :isect_memberEquality_alt,  voidElimination Error :universeIsType,  multiplyEquality addEquality equalityTransitivity int_eqEquality promote_hyp instantiate cumulativity Error :inlFormation_alt,  Error :inrFormation_alt,  applyLambdaEquality imageElimination universeEquality imageMemberEquality

Latex:
\mforall{}k:\mBbbN{}
    (\mexists{}a,b,c:\mBbbZ{}.  (((a  *  a  *  a)  +  (b  *  b  *  b)  +  (c  *  c  *  c))  =  k)
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}d,n:\mBbbN{}
              ((\muparrow{}is\_power(3;((2  *  d)  *  ((d  *  d)  +  (3  *  n  *  n)))  -  k))
              \mvee{}  (\muparrow{}is\_power(3;(((2  *  d)  +  1)  *  (((d  *  (d  +  1))  +  (3  *  n  *  (n  +  1)))  +  1))  -  k))))



Date html generated: 2019_06_20-PM-02_42_43
Last ObjectModification: 2019_03_19-PM-00_29_52

Theory : num_thy_1


Home Index