Nuprl Lemma : assert-is_power

n:ℕ+. ∀x:ℤ.  (↑is_power(n;x) ⇐⇒ ∃r:ℤ(x r^n ∈ ℤ))


Proof




Definitions occuring in Statement :  is_power: is_power(n;z) exp: i^n nat_plus: + assert: b all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat_plus: + or: P ∨ Q is_power: is_power(n;z) uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} eq_int: (i =z j) bfalse: ff band: p ∧b q ifthenelse: if then else fi  bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False assert: b iff: ⇐⇒ Q exists: x:A. B[x] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) prop: rev_implies:  Q subtype_rel: A ⊆B bnot: ¬bb nat: so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  int_nzero: -o nequal: a ≠ b ∈ 
Lemmas referenced :  mod2-cases subtype_base_sq int_subtype_base lt_int_wf eqtt_to_assert assert_of_lt_int istype-top istype-void mod2-is-zero nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermMultiply_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_formula_prop_less_lemma int_formula_prop_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf istype-less_than istype-nat set_subtype_base le_wf assert-is-power istype-le mod2-is-one itermAdd_wf int_term_value_add_lemma itermMinus_wf int_term_value_minus_lemma nat_plus_wf equal_wf squash_wf true_wf istype-universe exp_mul subtype_rel_self iff_weakening_equal decidable__equal_int exp_wf2 exp2 exp-non-neg square_non_neg absval_wf absval_squared exp-minus nat_properties nat_wf mod_bounds_1 nequal_wf mod2-2n-plus-1 exp_wf_nat_plus decidable__lt eq_int_wf assert_of_eq_int neg_assert_of_eq_int exp-positive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalRule natural_numberEquality Error :inhabitedIsType,  equalityElimination productElimination lessCases Error :isect_memberFormation_alt,  axiomSqEquality Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  independent_pairFormation voidElimination imageMemberEquality baseClosed imageElimination because_Cache promote_hyp approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :universeIsType,  Error :productIsType,  Error :equalityIstype,  applyEquality baseApply closedConclusion sqequalBase Error :dependent_set_memberEquality_alt,  minusEquality universeEquality multiplyEquality addEquality applyLambdaEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbZ{}.    (\muparrow{}is\_power(n;x)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}r:\mBbbZ{}.  (x  =  r\^{}n))



Date html generated: 2019_06_20-PM-02_34_39
Last ObjectModification: 2019_03_19-PM-00_16_28

Theory : num_thy_1


Home Index