Nuprl Lemma : add-ipoly-equiv

p,q:iMonomial() List.  ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q)


Proof




Definitions occuring in Statement :  add-ipoly: add-ipoly(p;q) ipolynomial-term: ipolynomial-term(p) iMonomial: iMonomial() equiv_int_terms: t1 ≡ t2 itermAdd: left (+) right list: List all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q false: False and: P ∧ Q ge: i ≥  le: A ≤ B cand: c∧ B less_than: a < b squash: T guard: {T} uimplies: supposing a prop: equiv_int_terms: t1 ≡ t2 less_than': less_than'(a;b) not: ¬A sq_stable: SqStable(P) decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True exists: x:A. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) nat_plus: + add-ipoly: add-ipoly(p;q) has-value: (a)↓ ifthenelse: if then else fi  btrue: tt cons: [a b] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff ipolynomial-term: ipolynomial-term(p) int_term_value: int_term_value(f;t) itermAdd: left (+) right int_term_ind: int_term_ind itermConstant: "const" bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b iMonomial: iMonomial() int_nzero: -o callbyvalueall: callbyvalueall has-valueall: has-valueall(a) pi1: fst(t) nequal: a ≠ b ∈  rev_uimplies: rev_uimplies(P;Q) imonomial-le: imonomial-le(m1;m2) pi2: snd(t) label: ...$L... t
Lemmas referenced :  list_wf iMonomial_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf istype-less_than length_wf subtract-1-ge-0 istype-nat add_nat_wf length_wf_nat istype-void istype-le sq_stable__le decidable__lt istype-false not-lt-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul zero-add add-zero add-commutes le-add-cancel non_neg_length istype-sqequal subtype_rel-equal nat_wf base_wf set_subtype_base le_wf int_subtype_base subtract_wf subtype_base_sq two-mul mul-distributes-right one-mul add_functionality_wrt_le le_reflexive less-iff-le minus-zero omega-shadow mul-distributes mul-commutes mul-associates mul-swap list-cases value-type-has-value list-value-type nil_wf null_nil_lemma product_subtype_list cons_wf null_cons_lemma spread_cons_lemma ipolynomial-term_wf add-is-int-iff int_term_value_wf imonomial-le_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot valueall-type-has-valueall list-valueall-type product-valueall-type int_nzero_wf sorted_wf set-valueall-type nequal_wf int-valueall-type add-ipoly_wf1 evalall-reduce int-value-type eq_int_wf assert_of_eq_int neg_assert_of_eq_int itermAdd_wf imonomial-term_wf length_of_cons_lemma not-equal-2 not-equal-implies-less equiv_int_terms_functionality itermAdd_functionality ipolynomial-term-cons int_nzero_properties equiv_int_terms_transitivity equiv_int_terms_weakening intlex_wf intlex-antisym subtype_rel_universe1 list_subtype_base equal_wf squash_wf true_wf istype-universe set_wf member_wf subtype_rel_self iff_weakening_equal imonomial-term-add imonomial-term-linear subtype_rel_product
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt inhabitedIsType hypothesisEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis setElimination rename intWeakElimination independent_pairFormation productElimination imageElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality_alt dependent_functionElimination axiomEquality functionIsTypeImplies addEquality because_Cache dependent_set_memberEquality_alt imageMemberEquality baseClosed equalityIstype equalityTransitivity equalitySymmetry unionElimination Error :memTop,  minusEquality multiplyEquality dependent_pairFormation_alt applyEquality intEquality promote_hyp applyLambdaEquality instantiate cumulativity callbyvalueReduce voidEquality hypothesis_subsumption functionIsType equalityElimination setEquality closedConclusion int_eqReduceTrueSq int_eqReduceFalseSq independent_pairEquality baseApply universeEquality hyp_replacement sqequalBase setIsType

Latex:
\mforall{}p,q:iMonomial()  List.
    ipolynomial-term(add-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (+)  ipolynomial-term(q)



Date html generated: 2020_05_19-PM-09_38_20
Last ObjectModification: 2020_01_04-PM-08_47_41

Theory : omega


Home Index