Nuprl Lemma : add-ipoly-equiv
∀p,q:iMonomial() List.  ipolynomial-term(add-ipoly(p;q)) ≡ ipolynomial-term(p) (+) ipolynomial-term(q)
Proof
Definitions occuring in Statement : 
add-ipoly: add-ipoly(p;q)
, 
ipolynomial-term: ipolynomial-term(p)
, 
iMonomial: iMonomial()
, 
equiv_int_terms: t1 ≡ t2
, 
itermAdd: left (+) right
, 
list: T List
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
equiv_int_terms: t1 ≡ t2
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
nat_plus: ℕ+
, 
add-ipoly: add-ipoly(p;q)
, 
has-value: (a)↓
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
cons: [a / b]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bfalse: ff
, 
ipolynomial-term: ipolynomial-term(p)
, 
int_term_value: int_term_value(f;t)
, 
itermAdd: left (+) right
, 
int_term_ind: int_term_ind, 
itermConstant: "const"
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
bnot: ¬bb
, 
assert: ↑b
, 
iMonomial: iMonomial()
, 
int_nzero: ℤ-o
, 
callbyvalueall: callbyvalueall, 
has-valueall: has-valueall(a)
, 
pi1: fst(t)
, 
nequal: a ≠ b ∈ T 
, 
rev_uimplies: rev_uimplies(P;Q)
, 
imonomial-le: imonomial-le(m1;m2)
, 
pi2: snd(t)
, 
label: ...$L... t
Lemmas referenced : 
list_wf, 
iMonomial_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
istype-less_than, 
length_wf, 
subtract-1-ge-0, 
istype-nat, 
add_nat_wf, 
length_wf_nat, 
istype-void, 
istype-le, 
sq_stable__le, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
zero-add, 
add-zero, 
add-commutes, 
le-add-cancel, 
non_neg_length, 
istype-sqequal, 
subtype_rel-equal, 
nat_wf, 
base_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
subtract_wf, 
subtype_base_sq, 
two-mul, 
mul-distributes-right, 
one-mul, 
add_functionality_wrt_le, 
le_reflexive, 
less-iff-le, 
minus-zero, 
omega-shadow, 
mul-distributes, 
mul-commutes, 
mul-associates, 
mul-swap, 
list-cases, 
value-type-has-value, 
list-value-type, 
nil_wf, 
null_nil_lemma, 
product_subtype_list, 
cons_wf, 
null_cons_lemma, 
spread_cons_lemma, 
ipolynomial-term_wf, 
add-is-int-iff, 
int_term_value_wf, 
imonomial-le_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
valueall-type-has-valueall, 
list-valueall-type, 
product-valueall-type, 
int_nzero_wf, 
sorted_wf, 
set-valueall-type, 
nequal_wf, 
int-valueall-type, 
add-ipoly_wf1, 
evalall-reduce, 
int-value-type, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
itermAdd_wf, 
imonomial-term_wf, 
length_of_cons_lemma, 
not-equal-2, 
not-equal-implies-less, 
equiv_int_terms_functionality, 
itermAdd_functionality, 
ipolynomial-term-cons, 
int_nzero_properties, 
equiv_int_terms_transitivity, 
equiv_int_terms_weakening, 
intlex_wf, 
intlex-antisym, 
subtype_rel_universe1, 
list_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
set_wf, 
member_wf, 
subtype_rel_self, 
iff_weakening_equal, 
imonomial-term-add, 
imonomial-term-linear, 
subtype_rel_product
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
independent_pairFormation, 
productElimination, 
imageElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
axiomEquality, 
functionIsTypeImplies, 
addEquality, 
because_Cache, 
dependent_set_memberEquality_alt, 
imageMemberEquality, 
baseClosed, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
Error :memTop, 
minusEquality, 
multiplyEquality, 
dependent_pairFormation_alt, 
applyEquality, 
intEquality, 
promote_hyp, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
callbyvalueReduce, 
voidEquality, 
hypothesis_subsumption, 
functionIsType, 
equalityElimination, 
setEquality, 
closedConclusion, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq, 
independent_pairEquality, 
baseApply, 
universeEquality, 
hyp_replacement, 
sqequalBase, 
setIsType
Latex:
\mforall{}p,q:iMonomial()  List.
    ipolynomial-term(add-ipoly(p;q))  \mequiv{}  ipolynomial-term(p)  (+)  ipolynomial-term(q)
Date html generated:
2020_05_19-PM-09_38_20
Last ObjectModification:
2020_01_04-PM-08_47_41
Theory : omega
Home
Index