Nuprl Lemma : KozenSilva-lemma
∀[r:CRng]. ∀[x,y:Atom]. ∀[h:PowerSeries(r)]. ∀[n,m:ℕ].
  [([h]_n(y:=1)*Δ(x,y))]_m = ([h]_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))^(m - n)) ∈ PowerSeries(r) 
  supposing (n ≤ m) ∧ (¬(x = y ∈ Atom))
Proof
Definitions occuring in Statement : 
fps-set-to-one: [f]_n(y:=1), 
fps-pascal: Δ(x,y), 
fps-compose: g(x:=f), 
fps-exp: (f)^(n), 
fps-slice: [f]_n, 
fps-mul: (f*g), 
fps-add: (f+g), 
fps-atom: atom(x), 
power-series: PowerSeries(X;r), 
atom-deq: AtomDeq, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
le: A ≤ B, 
not: ¬A, 
and: P ∧ Q, 
subtract: n - m, 
atom: Atom, 
equal: s = t ∈ T, 
crng: CRng
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
prop: ℙ, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
cand: A c∧ B, 
crng: CRng, 
rng: Rng, 
compose: f o g, 
true: True, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
monoid_p: IsMonoid(T;op;id), 
assoc: Assoc(T;op), 
ident: Ident(T;op;id), 
comm: Comm(T;op), 
single-bag: {x}, 
bag-filter: [x∈b|p[x]], 
int_seg: {i..j-}, 
l_member!: (x ∈! l), 
le: A ≤ B, 
lelt: i ≤ j < k, 
less_than: a < b, 
rev_uimplies: rev_uimplies(P;Q), 
l_all: (∀x∈L.P[x]), 
fps-summation: fps-summation(r;b;x.f[x]), 
fps-atom: atom(x), 
nequal: a ≠ b ∈ T , 
empty-bag: {}, 
fps-add: (f+g), 
fps-coeff: f[b], 
fps-single: <c>, 
bag-eq: bag-eq(eq;as;bs), 
bag-count: (#x in bs), 
bag-all: bag-all(x.p[x];bs), 
count: count(P;L), 
bag-map: bag-map(f;bs), 
bag-reduce: bag-reduce(x,y.f[x; y];zero;bs), 
lt_int: i <z j, 
band: p ∧b q, 
fps-slice: [f]_n, 
fps-mul: (f*g)
Lemmas referenced : 
le_wf, 
not_wf, 
equal-wf-base, 
atom_subtype_base, 
nat_wf, 
power-series_wf, 
crng_wf, 
fps-linear-ucont-equal, 
atom-valueall-type, 
atom-deq_wf, 
fps-slice_wf, 
fps-mul_wf, 
fps-set-to-one_wf, 
fps-pascal_wf, 
fps-compose_wf, 
fps-add_wf, 
fps-atom_wf, 
fps-exp_wf, 
subtract_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rng_car_wf, 
bag_wf, 
fps-ucont-composition, 
fps-slice-ucont, 
fps-mul-ucont, 
fps-set-to-one-ucont, 
fps-compose-ucont, 
equal_wf, 
fps-add-slice, 
iff_weakening_equal, 
squash_wf, 
true_wf, 
valueall-type_wf, 
deq_wf, 
fps-set-to-one-add, 
mul_over_plus_fps, 
mul_comm_fps, 
fps-compose-add, 
fps-set-to-one-scalar-mul, 
fps-scalar-mul-slice, 
fps-scalar-mul-property, 
fps-scalar-mul_wf, 
fps-compose-scalar-mul, 
eq_int_wf, 
bag-size_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
fps-set-to-one-single, 
fps-single-slice, 
fps-mul-slice, 
fps-single_wf, 
bag-co-restrict_wf, 
fps-zero_wf, 
mon_assoc_fps, 
abmonoid_comm_fps, 
mon_ident_fps, 
bag-restrict-size-bound, 
fps-summation_wf, 
filter_is_singleton, 
upto_wf, 
subtype_rel_list, 
int_seg_wf, 
length_upto, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
select_upto, 
non_neg_length, 
length_wf_nat, 
lelt_wf, 
select_wf, 
less_than_wf, 
length_wf, 
all_wf, 
decidable__equal_int, 
assert_wf, 
int_seg_properties, 
list-subtype-bag, 
bag-summation-single, 
fps-pascal-slice, 
fps-compose-single, 
rng_zero_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
rng_plus_zero, 
fps-mul-assoc, 
bag-restrict_wf, 
fps-exp-add, 
bag-summation-filter, 
bag-summation_wf, 
bag-summation-equal, 
bag-member_wf, 
ifthenelse_wf, 
mul_zero_fps, 
fps-zero-slice, 
fps-compose-zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
hypothesis, 
productEquality, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
atomEquality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality, 
dependent_set_memberEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
cumulativity, 
equalityElimination, 
promote_hyp, 
instantiate, 
independent_pairEquality, 
hyp_replacement, 
applyLambdaEquality, 
addEquality, 
functionEquality, 
equalityUniverse, 
levelHypothesis, 
functionExtensionality
Latex:
\mforall{}[r:CRng].  \mforall{}[x,y:Atom].  \mforall{}[h:PowerSeries(r)].  \mforall{}[n,m:\mBbbN{}].
    [([h]\_n(y:=1)*\mDelta{}(x,y))]\_m  =  ([h]\_n(y:=(atom(x)+atom(y)))*((atom(x)+atom(y)))\^{}(m  -  n)) 
    supposing  (n  \mleq{}  m)  \mwedge{}  (\mneg{}(x  =  y))
Date html generated:
2018_05_21-PM-10_13_40
Last ObjectModification:
2017_07_26-PM-06_35_24
Theory : power!series
Home
Index