Nuprl Lemma : length-rat-complex-boundary-even
∀k,n:ℕ. ∀K:n-dim-complex.  (↑isEven(||∂(K)||))
Proof
Definitions occuring in Statement : 
rat-complex-boundary: ∂(K), 
rational-cube-complex: n-dim-complex, 
isEven: isEven(n), 
length: ||as||, 
nat: ℕ, 
assert: ↑b, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
sq_type: SQType(T), 
implies: P ⇒ Q, 
guard: {T}, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
isEven: isEven(n), 
eq_int: (i =z j), 
modulus: a mod n, 
remainder: n rem m, 
length: ||as||, 
list_ind: list_ind, 
nil: [], 
it: ⋅, 
btrue: tt, 
true: True, 
rational-cube-complex: n-dim-complex, 
less_than: a < b, 
squash: ↓T, 
cons: [a / b], 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
subtract: n - m, 
rat-cube-sub-complex: rat-cube-sub-complex(P;L), 
rat-complex-boundary: ∂(K), 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
face-complex: face-complex(k;L), 
remove-repeats: remove-repeats(eq;L), 
concat: concat(ll), 
map: map(f;as), 
l_member: (x ∈ l), 
select: L[n], 
nat_plus: ℕ+, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
rat-cube-dimension: dim(c), 
bfalse: ff, 
rev_uimplies: rev_uimplies(P;Q), 
sq_stable: SqStable(P), 
isl: isl(x), 
set-equal: set-equal(T;x;y), 
l_disjoint: l_disjoint(T;l1;l2), 
bnot: ¬bb
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
rat-complex-boundary-0-dim, 
nat_wf, 
set_subtype_base, 
le_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
istype-le, 
subtype_rel_self, 
rational-cube-complex_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
istype-less_than, 
assert_witness, 
le_weakening2, 
length_wf, 
rational-cube_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
length_wf_nat, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
isEven_wf, 
rat-complex-boundary_wf, 
subtract-1-ge-0, 
non_neg_length, 
add_nat_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
istype-nat, 
rat-complex-boundary-remove1, 
rat-cube-sub-complex_wf, 
bnot_wf, 
rceq_wf, 
l_member_wf, 
filter-length-less, 
iff_weakening_uiff, 
assert_wf, 
not_wf, 
assert_of_bnot, 
istype-assert, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
add_nat_plus, 
nat_plus_properties, 
cons_wf, 
select_wf, 
subtract-add-cancel, 
rat-cube-face_wf, 
rat-cube-dimension_wf, 
lelt_wf, 
member_wf, 
assert-rceq, 
inhabited-rat-cube_wf, 
bool_cases, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
member-rat-cube-faces, 
add-subtract-cancel, 
l_all_iff, 
equal-wf-base, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
iff_weakening_equal, 
rat-cube-faces_wf, 
subtype_rel_list, 
assert_functionality_wrt_uiff, 
length-rat-cube-faces, 
isEven-2n, 
assert_of_tt, 
no_repeats-rat-cube-faces, 
sq_stable__assert, 
no_repeats_wf, 
list_wf, 
decidable__l_member, 
decidable__equal_rc, 
filter-split-length, 
btrue_wf, 
bfalse_wf, 
set-equal-no_repeats-length, 
filter_wf5, 
no_repeats_filter, 
istype-true, 
member_filter, 
append_wf, 
no_repeats-append, 
isl_wf, 
assert_elim, 
btrue_neq_bfalse, 
member_append, 
length-append, 
itermMultiply_wf, 
itermMinus_wf, 
int_term_value_mul_lemma, 
int_term_value_minus_lemma, 
even-plus-even
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality_alt, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
dependent_set_memberEquality_alt, 
intWeakElimination, 
functionIsTypeImplies, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
minusEquality, 
equalityIstype, 
applyLambdaEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
setIsType, 
productIsType, 
functionIsType, 
unionIsType, 
sqequalBase, 
universeEquality, 
imageMemberEquality, 
inlFormation_alt, 
inrFormation_alt, 
setEquality, 
productEquality, 
multiplyEquality, 
functionExtensionality
Latex:
\mforall{}k,n:\mBbbN{}.  \mforall{}K:n-dim-complex.    (\muparrow{}isEven(||\mpartial{}(K)||))
Date html generated:
2020_05_20-AM-09_22_42
Last ObjectModification:
2019_11_27-AM-11_45_00
Theory : rationals
Home
Index