Nuprl Lemma : no_repeats-rat-cube-faces
∀k:ℕ. ∀c:ℚCube(k).  no_repeats(ℚCube(k);rat-cube-faces(k;c))
Proof
Definitions occuring in Statement : 
rat-cube-faces: rat-cube-faces(k;c), 
rational-cube: ℚCube(k), 
no_repeats: no_repeats(T;l), 
nat: ℕ, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
rat-cube-faces: rat-cube-faces(k;c), 
mapfilter: mapfilter(f;P;L), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
rational-cube: ℚCube(k), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_disjoint: l_disjoint(T;l1;l2), 
cand: A c∧ B, 
uiff: uiff(P;Q), 
rational-interval: ℚInterval, 
pi2: snd(t), 
lower-rc-face: lower-rc-face(c;j), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
sq_type: SQType(T), 
guard: {T}, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
rat-point-interval: [a], 
rat-interval-dimension: dim(I), 
pi1: fst(t), 
true: True, 
upper-rc-face: upper-rc-face(c;j), 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
no_repeats-concat, 
map_wf, 
int_seg_wf, 
list_wf, 
rational-cube_wf, 
cons_wf, 
lower-rc-face_wf, 
upper-rc-face_wf, 
nil_wf, 
filter_wf5, 
upto_wf, 
eq_int_wf, 
rat-interval-dimension_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
l_member_wf, 
istype-nat, 
pairwise-map, 
l_disjoint_wf, 
pairwise-iff2, 
no_repeats_filter, 
no_repeats_upto, 
member_filter_2, 
assert_of_eq_int, 
not_wf, 
cons_member, 
l_disjoint_nil2, 
iff_transitivity, 
iff_weakening_uiff, 
l_disjoint_cons, 
eqtt_to_assert, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
subtype_base_sq, 
int_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
q_less_wf, 
equal-wf-T-base, 
assert_wf, 
qless_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
bnot_wf, 
istype-assert, 
uiff_transitivity2, 
assert-q_less-eq, 
assert_of_bnot, 
iff_weakening_equal, 
member_singleton, 
l_all_iff, 
no_repeats_wf, 
member_map, 
squash_wf, 
true_wf, 
istype-universe, 
subtype_rel_self, 
no_repeats_cons, 
no_repeats_singleton, 
length_wf, 
length_of_cons_lemma, 
length_of_nil_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
universeIsType, 
applyEquality, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
independent_pairFormation, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
productIsType, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
setIsType, 
instantiate, 
cumulativity, 
functionIsType, 
equalityIstype, 
productEquality, 
promote_hyp, 
applyLambdaEquality, 
equalityElimination, 
intEquality, 
baseClosed, 
sqequalBase, 
universeEquality, 
imageMemberEquality
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c:\mBbbQ{}Cube(k).    no\_repeats(\mBbbQ{}Cube(k);rat-cube-faces(k;c))
Date html generated:
2020_05_20-AM-09_22_08
Last ObjectModification:
2019_11_27-AM-10_48_43
Theory : rationals
Home
Index