Nuprl Lemma : qround-property
∀[k:ℕ+]. ∀[r:ℚ].  |r - qround(r;k)| < (1/2 * k)
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qless: r < s, 
qsub: r - s, 
qdiv: (r/s), 
qround: qround(r;k), 
qmul: r * s, 
rationals: ℚ, 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
decidable: Dec(P), 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
or: P ∨ Q, 
true: True, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
implies: P ⇒ Q, 
not: ¬A, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
nat_plus: ℕ+, 
subtype_rel: A ⊆r B, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
rev_uimplies: rev_uimplies(P;Q), 
qeq: qeq(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
eq_int: (i =z j), 
qsub: r - s
Lemmas referenced : 
istype-less_than, 
rounded-numerator_wf, 
qless_wf, 
int_formula_prop_not_lemma, 
intformnot_wf, 
decidable__lt, 
qless-int, 
qmul-positive, 
qabs-of-positive, 
nat_plus_wf, 
int-equal-in-rationals, 
equal-wf-base, 
iff_weakening_uiff, 
int_subtype_base, 
set_subtype_base, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformeq_wf, 
intformand_wf, 
full-omega-unsat, 
nat_plus_properties, 
qmul-mul, 
istype-int, 
less_than_wf, 
rationals_wf, 
subtype_rel_set, 
qmul_wf, 
int-subtype-rationals, 
qdiv_wf, 
qround_wf, 
qsub_wf, 
qabs_wf, 
qless_witness, 
squash_wf, 
true_wf, 
qround-eq, 
subtype_rel_self, 
iff_weakening_equal, 
qabs-abs, 
absval_unfold, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
assert_wf, 
itermMinus_wf, 
int_term_value_minus_lemma, 
qmul_preserves_qless, 
qadd_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
qabs-qmul, 
assert-qeq, 
qmul_comm_qrng, 
qadd_comm_q, 
qmul-qdiv-cancel, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qmul_ac_1_qrng, 
qmul-qdiv-cancel6, 
rounded-numerator-property, 
qmul_assoc_qrng
Rules used in proof : 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
hyp_replacement, 
minusEquality, 
productIsType, 
unionElimination, 
imageMemberEquality, 
inlFormation_alt, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
inhabitedIsType, 
productElimination, 
multiplyEquality, 
equalityTransitivity, 
because_Cache, 
equalitySymmetry, 
sqequalBase, 
baseClosed, 
baseApply, 
equalityIstype, 
voidElimination, 
universeIsType, 
independent_pairFormation, 
Error :memTop, 
dependent_functionElimination, 
int_eqEquality, 
dependent_pairFormation_alt, 
independent_functionElimination, 
approximateComputation, 
lambdaFormation_alt, 
rename, 
setElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
intEquality, 
sqequalRule, 
applyEquality, 
natural_numberEquality, 
closedConclusion, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
instantiate, 
universeEquality, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
promote_hyp, 
cumulativity
Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[r:\mBbbQ{}].    |r  -  qround(r;k)|  <  (1/2  *  k)
Date html generated:
2020_05_20-AM-09_16_52
Last ObjectModification:
2019_12_13-AM-09_33_28
Theory : rationals
Home
Index