Nuprl Lemma : rational-truncate1
∀q:ℚ. ∀e:{e:ℚ| 0 < e ∧ e < 1} .  (∃p:ℤ × ℕ+ [((|q - (fst(p)/snd(p))| ≤ e) ∧ (((snd(p)) * e) ≤ 2))])
Proof
Definitions occuring in Statement : 
qabs: |r|, 
qle: r ≤ s, 
qless: r < s, 
qsub: r - s, 
qdiv: (r/s), 
qmul: r * s, 
rationals: ℚ, 
nat_plus: ℕ+, 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
sq_exists: ∃x:A [B[x]], 
and: P ∧ Q, 
set: {x:A| B[x]} , 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
has-value: (a)↓, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
guard: {T}, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cand: A c∧ B, 
sq_stable: SqStable(P), 
squash: ↓T, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
qless: r < s, 
grp_lt: a < b, 
set_lt: a <p b, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
set_blt: a <b b, 
band: p ∧b q, 
infix_ap: x f y, 
set_le: ≤b, 
pi2: snd(t), 
oset_of_ocmon: g↓oset, 
dset_of_mon: g↓set, 
grp_le: ≤b, 
pi1: fst(t), 
qadd_grp: <ℚ+>, 
q_le: q_le(r;s), 
callbyvalueall: callbyvalueall, 
evalall: evalall(t), 
bor: p ∨bq, 
qpositive: qpositive(r), 
qsub: r - s, 
qadd: r + s, 
qmul: r * s, 
btrue: tt, 
lt_int: i <z j, 
bnot: ¬bb, 
bfalse: ff, 
qeq: qeq(r;s), 
eq_int: (i =z j), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
sq_exists: ∃x:A [B[x]], 
nat_plus: ℕ+, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
less_than: a < b, 
less_than': less_than'(a;b), 
or: P ∨ Q, 
sq_type: SQType(T)
Lemmas referenced : 
value-type-has-value, 
qless_wf, 
subtract_wf, 
qdiv_wf, 
qless_transitivity_2_qorder, 
qle_weakening_eq_qorder, 
qless_irreflexivity, 
equal-wf-T-base, 
rationals_wf, 
qle_wf, 
int-subtype-rationals, 
set-value-type, 
int-value-type, 
rat-int-bound_wf, 
set_wf, 
equal_wf, 
less_than_wf, 
qmul_wf, 
squash_wf, 
sq_stable__and, 
sq_stable__less_than, 
sq_stable_from_decidable, 
decidable__qle, 
qle_witness, 
qmul_preserves_qless, 
true_wf, 
qmul_zero_qrng, 
qmul-qdiv-cancel, 
iff_weakening_equal, 
qless-int, 
qmul_preserves_qle2, 
qle_weakening_lt_qorder, 
qmul_com, 
qadd_preserves_qle, 
qsub-sub, 
qsub_wf, 
qless_witness, 
qadd_wf, 
qadd_preserves_qless, 
qmul_comm_qrng, 
qmul_one_qrng, 
qadd_assoc, 
mon_ident_q, 
qmul_over_plus_qrng, 
qmul_over_minus_qrng, 
qadd_comm_q, 
qadd_inv_assoc_q, 
integer-part_wf, 
subtype_rel_set, 
qabs_wf, 
int_nzero-rational, 
subtype_rel_sets, 
nequal_wf, 
nat_plus_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
qabs-qdiv, 
not_wf, 
qmul-preserves-eq, 
qabs-abs, 
absval_unfold, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
intformnot_wf, 
int_formula_prop_not_lemma, 
integer-fractional-parts, 
fractional-part_wf, 
mon_assoc_q, 
qadd_ac_1_q, 
qinverse_q, 
qabs-of-nonneg, 
qmul_preserves_qle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
introduction, 
sqequalRule, 
callbyvalueReduce, 
sqequalHypSubstitution, 
productElimination, 
cut, 
extract_by_obid, 
isectElimination, 
setEquality, 
intEquality, 
productEquality, 
hypothesisEquality, 
natural_numberEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
voidElimination, 
baseClosed, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
independent_pairFormation, 
independent_pairEquality, 
imageMemberEquality, 
imageElimination, 
universeEquality, 
isect_memberFormation, 
minusEquality, 
dependent_set_memberEquality, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
voidEquality, 
computeAll, 
hyp_replacement, 
unionElimination, 
equalityElimination, 
lessCases, 
sqequalAxiom, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}q:\mBbbQ{}.  \mforall{}e:\{e:\mBbbQ{}|  0  <  e  \mwedge{}  e  <  1\}  .    (\mexists{}p:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}  [((|q  -  (fst(p)/snd(p))|  \mleq{}  e)  \mwedge{}  (((snd(p))  *  e)  \mleq{}  2))])
Date html generated:
2018_05_22-AM-00_31_11
Last ObjectModification:
2017_07_26-PM-06_58_52
Theory : rationals
Home
Index