Nuprl Lemma : itop_aux_wf

[A:Type]. ∀[op:A ⟶ A ⟶ A]. ∀[id:A]. ∀[p:ℤ]. ∀[q:{p...}]. ∀[E:{p..q-} ⟶ A].  (op,id) p ≤ i < q. E[i] ∈ A)


Proof




Definitions occuring in Statement :  itop: Π(op,id) lb ≤ i < ub. E[i] int_upper: {i...} int_seg: {i..j-} uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_upper: {i...} all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b
Lemmas referenced :  nat_wf int_term_value_add_lemma itermAdd_wf itop_wf decidable__lt int_upper_properties int_formula_prop_eq_lemma intformeq_wf lelt_wf false_wf int_seg_subtype decidable__equal_int int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf decidable__le int_seg_properties subtract_wf le_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties int_upper_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry functionEquality lemma_by_obid isectElimination thin hypothesisEquality setElimination rename isect_memberEquality because_Cache intEquality universeEquality lambdaFormation intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality dependent_functionElimination voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination unionElimination applyEquality setEquality hypothesis_subsumption dependent_set_memberEquality addEquality

Latex:
\mforall{}[A:Type].  \mforall{}[op:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[id:A].  \mforall{}[p:\mBbbZ{}].  \mforall{}[q:\{p...\}].  \mforall{}[E:\{p..q\msupminus{}\}  {}\mrightarrow{}  A].
    (\mPi{}(op,id)  p  \mleq{}  i  <  q.  E[i]  \mmember{}  A)



Date html generated: 2016_05_15-PM-00_14_37
Last ObjectModification: 2016_01_15-PM-11_05_36

Theory : groups_1


Home Index