Nuprl Lemma : mon_when_hom_swap

[g,h:GrpSig]. ∀[f:MonHom(g,h)]. ∀[b:𝔹]. ∀[p:|g|].  ((when b. (f p)) (f (when b. p)) ∈ |h|)


Proof




Definitions occuring in Statement :  mon_when: when b. p monoid_hom: MonHom(M1,M2) grp_car: |g| grp_sig: GrpSig bool: 𝔹 uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mon_when: when b. p all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff prop: monoid_hom: MonHom(M1,M2) squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  bool_wf eqtt_to_assert uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot equal_wf grp_car_wf monoid_hom_wf grp_sig_wf squash_wf true_wf grp_id_wf monoid_hom_id iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesisEquality thin extract_by_obid hypothesis lambdaFormation sqequalHypSubstitution unionElimination equalityElimination isectElimination because_Cache productElimination independent_isectElimination sqequalRule baseClosed independent_functionElimination equalityTransitivity equalitySymmetry dependent_functionElimination isect_memberEquality axiomEquality applyEquality setElimination rename lambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality

Latex:
\mforall{}[g,h:GrpSig].  \mforall{}[f:MonHom(g,h)].  \mforall{}[b:\mBbbB{}].  \mforall{}[p:|g|].    ((when  b.  (f  p))  =  (f  (when  b.  p)))



Date html generated: 2017_10_01-AM-08_17_17
Last ObjectModification: 2017_02_28-PM-02_02_49

Theory : groups_1


Home Index