Nuprl Lemma : quot_by_prime_ideal

r:CRng. ∀p:Ideal(r){i}. ∀d:detach_fun(|r|;p).  ((∀u:|r|. SqStable(p u))  (IsPrimeIdeal(r;p) ⇐⇒ IsIntegDom(r d)))


Proof




Definitions occuring in Statement :  prime_ideal_p: IsPrimeIdeal(R;P) quot_ring: d ideal: Ideal(r){i} integ_dom_p: IsIntegDom(r) crng: CRng rng_car: |r| detach_fun: detach_fun(T;A) sq_stable: SqStable(P) all: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] crng: CRng rng: Rng so_lambda: λ2x.t[x] ideal: Ideal(r){i} so_apply: x[s] integ_dom_p: IsIntegDom(r) nequal: a ≠ b ∈  iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a infix_ap: y type_inj: [x]{T} quot_ring: d rng_one: 1 pi2: snd(t) pi1: fst(t) rng_zero: 0 rng_times: * true: True squash: T or: P ∨ Q false: False not: ¬A cand: c∧ B decidable: Dec(P) prime_ideal_p: IsPrimeIdeal(R;P)
Lemmas referenced :  all_wf rng_car_wf sq_stable_wf detach_fun_wf ideal_wf crng_wf not_functionality_wrt_iff equal_wf quot_ring_wf rng_subtype_rng_sig crng_subtype_rng subtype_rel_transitivity rng_wf rng_sig_wf type_inj_wf_for_qrng rng_one_wf rng_zero_wf rng_plus_wf rng_minus_wf quot_ring_car_elim_b rng_times_wf not_wf prime_ideal_p_wf subtype_rel_self all_rng_quot_elim_a rev_implies_wf sq_stable__all sq_stable__equal squash_wf true_wf rng_plus_zero iff_weakening_equal rng_plus_comm rng_minus_zero or_wf dec_alt_char iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality because_Cache productElimination independent_pairFormation independent_functionElimination instantiate independent_isectElimination dependent_functionElimination cumulativity universeEquality productEquality functionEquality equalityTransitivity equalitySymmetry natural_numberEquality imageElimination imageMemberEquality baseClosed voidElimination inlFormation inrFormation unionElimination addLevel

Latex:
\mforall{}r:CRng.  \mforall{}p:Ideal(r)\{i\}.  \mforall{}d:detach\_fun(|r|;p).
    ((\mforall{}u:|r|.  SqStable(p  u))  {}\mRightarrow{}  (IsPrimeIdeal(r;p)  \mLeftarrow{}{}\mRightarrow{}  IsIntegDom(r  /  d)))



Date html generated: 2019_10_15-AM-10_33_56
Last ObjectModification: 2018_08_29-AM-10_10_15

Theory : rings_1


Home Index