Nuprl Lemma : ball_respects_bsublist

s:DSet. ∀us,vs:|s| List.
  ((↑bsublist(s;us;vs))  (∀Q:|s| ⟶ 𝔹((↑(For{<𝔹,∧b>x ∈ vs. Q[x]))  (↑(For{<𝔹,∧b>x ∈ us. Q[x])))))


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) mon_for: For{g} x ∈ as. f[x] list: List assert: b bool: 𝔹 so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] band_mon: <𝔹,∧b> dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a dset: DSet so_lambda: λ2x.t[x] so_apply: x[s] band_mon: <𝔹,∧b> grp_car: |g| pi1: fst(t) abmonoid: AbMon mon: Mon exists: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q infix_ap: y grp_op: * pi2: snd(t)
Lemmas referenced :  assert_wf mon_for_wf band_mon_wf iabmonoid_subtype_imon abmonoid_subtype_iabmonoid subtype_rel_transitivity abmonoid_wf iabmonoid_wf imon_wf set_car_wf bool_wf grp_car_wf bsublist_wf list_wf dset_wf bsublist_append_diff append_wf mem_f_wf assert_functionality_wrt_uiff mon_for_functionality_wrt_permr permr_inversion grp_op_wf mon_for_append assert_of_band
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesis applyEquality instantiate independent_isectElimination sqequalRule setElimination rename hypothesisEquality lambdaEquality functionEquality independent_functionElimination productElimination because_Cache

Latex:
\mforall{}s:DSet.  \mforall{}us,vs:|s|  List.
    ((\muparrow{}bsublist(s;us;vs))
    {}\mRightarrow{}  (\mforall{}Q:|s|  {}\mrightarrow{}  \mBbbB{}.  ((\muparrow{}(For\{<\mBbbB{},\mwedge{}\msubb{}>\}  x  \mmember{}  vs.  Q[x]))  {}\mRightarrow{}  (\muparrow{}(For\{<\mBbbB{},\mwedge{}\msubb{}>\}  x  \mmember{}  us.  Q[x])))))



Date html generated: 2016_05_16-AM-07_41_58
Last ObjectModification: 2015_12_28-PM-05_41_46

Theory : list_2


Home Index