Nuprl Lemma : bsublist_append_diff

s:DSet. ∀as,bs:|s| List.  ((↑bsublist(s;as;bs))  (∃cs:|s| List. ((cs as) ≡(|s|) bs)))


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) permr: as ≡(T) bs append: as bs list: List assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] dset: DSet iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q true: True squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  diff_wf permr_wf set_car_wf append_wf assert_wf bsublist_wf list_wf dset_wf permr_iff_eq_counts count_wf ndiff_wf equal_wf squash_wf true_wf count_append add_functionality_wrt_eq count_diff iff_weakening_equal count_bsublist le_int_wf bool_wf equal-wf-T-base le_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lt_int_wf less_than_wf bnot_wf ndiff_add_eq_imax imax_unfold uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation dependent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination setElimination rename because_Cache productElimination independent_functionElimination intEquality natural_numberEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry universeEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination unionElimination int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll equalityElimination

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    ((\muparrow{}bsublist(s;as;bs))  {}\mRightarrow{}  (\mexists{}cs:|s|  List.  ((cs  @  as)  \mequiv{}(|s|)  bs)))



Date html generated: 2017_10_01-AM-09_57_21
Last ObjectModification: 2017_03_03-PM-00_58_53

Theory : list_2


Home Index