Nuprl Lemma : length_functionality_wrt_permr
∀A:Type. ∀as,as':A List.  ((as ≡(A) as') ⇒ (||as|| = ||as'|| ∈ ℤ))
Proof
Definitions occuring in Statement : 
permr: as ≡(T) bs, 
length: ||as||, 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
member: t ∈ T, 
true: True, 
all: ∀x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
abgrp: AbGrp, 
grp: Group{i}, 
mon: Mon, 
iabmonoid: IAbMonoid, 
imon: IMonoid, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
grp_car: |g|, 
pi1: fst(t), 
int_add_grp: <ℤ+>
Lemmas referenced : 
permr_wf, 
list_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
length_mon_for_char, 
subtype_rel_self, 
iff_weakening_equal, 
int_add_grp_wf, 
subtype_rel_sets, 
grp_sig_wf, 
monoid_p_wf, 
grp_car_wf, 
grp_op_wf, 
grp_id_wf, 
inverse_wf, 
grp_inv_wf, 
comm_wf, 
mem_f_wf, 
mon_for_wf, 
mon_for_functionality_wrt_permr
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
intEquality, 
hypothesisEquality, 
natural_numberEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesis, 
inhabitedIsType, 
isectElimination, 
universeEquality, 
lambdaFormation_alt, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
setEquality, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
setIsType
Latex:
\mforall{}A:Type.  \mforall{}as,as':A  List.    ((as  \mequiv{}(A)  as')  {}\mRightarrow{}  (||as||  =  ||as'||))
Date html generated:
2019_10_16-PM-01_02_39
Last ObjectModification:
2018_10_08-AM-11_46_32
Theory : list_2
Home
Index