Nuprl Lemma : length_functionality_wrt_permr

A:Type. ∀as,as':A List.  ((as ≡(A) as')  (||as|| ||as'|| ∈ ℤ))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs length: ||as|| list: List all: x:A. B[x] implies:  Q int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T true: True all: x:A. B[x] prop: uall: [x:A]. B[x] implies:  Q squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q abgrp: AbGrp grp: Group{i} mon: Mon iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] so_apply: x[s] grp_car: |g| pi1: fst(t) int_add_grp: <ℤ+>
Lemmas referenced :  permr_wf list_wf equal_wf squash_wf true_wf istype-universe length_mon_for_char subtype_rel_self iff_weakening_equal int_add_grp_wf subtype_rel_sets grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf comm_wf mem_f_wf mon_for_wf mon_for_functionality_wrt_permr
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity intEquality hypothesisEquality natural_numberEquality universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesis inhabitedIsType isectElimination universeEquality lambdaFormation_alt applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination setEquality cumulativity setElimination rename because_Cache setIsType

Latex:
\mforall{}A:Type.  \mforall{}as,as':A  List.    ((as  \mequiv{}(A)  as')  {}\mRightarrow{}  (||as||  =  ||as'||))



Date html generated: 2019_10_16-PM-01_02_39
Last ObjectModification: 2018_10_08-AM-11_46_32

Theory : list_2


Home Index