Nuprl Lemma : oalist_hgrp_eqs
∀s:LOSet. ∀g:OGrp. ∀a1,a2:|oal(s;g↓hgrp)|.  ((a1 = a2 ∈ |oal(s;g)|) ⇒ (a1 = a2 ∈ |oal(s;g↓hgrp)|))
Proof
Definitions occuring in Statement : 
oalist: oal(a;b), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T, 
hgrp_of_ocgrp: g↓hgrp, 
ocgrp: OGrp, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
grp_id: e, 
pi1: fst(t), 
pi2: snd(t), 
hgrp_of_ocgrp: g↓hgrp, 
grp_car: |g|, 
hgrp_car: |g|+, 
ocgrp: OGrp, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
dset: DSet
Lemmas referenced : 
equal_wf, 
set_car_wf, 
oalist_wf, 
ocmon_subtype_abdmonoid, 
ocgrp_subtype_ocmon, 
subtype_rel_transitivity, 
ocgrp_wf, 
ocmon_wf, 
abdmonoid_wf, 
set_car_inc, 
hgrp_of_ocgrp_wf2, 
loset_wf, 
oalist_strong-subtype, 
grp_id_wf, 
hgrp_of_ocgrp_wf, 
grp_car_wf, 
grp_leq_wf, 
strong-subtype-self, 
strong-subtype-set3, 
strong-subtype-implies, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
independent_pairFormation, 
lambdaEquality, 
setElimination, 
rename, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}s:LOSet.  \mforall{}g:OGrp.  \mforall{}a1,a2:|oal(s;g\mdownarrow{}hgrp)|.    ((a1  =  a2)  {}\mRightarrow{}  (a1  =  a2))
Date html generated:
2016_05_16-AM-08_22_29
Last ObjectModification:
2015_12_28-PM-06_26_42
Theory : polynom_2
Home
Index