Nuprl Lemma : oalist_strong-subtype
∀[a:LOSet]. ∀[b1,b2:AbDMon].
  strong-subtype(|oal(a;b1)|;|oal(a;b2)|) supposing strong-subtype(|b1|;|b2|) ∧ (e = e ∈ |b2|)
Proof
Definitions occuring in Statement : 
oalist: oal(a;b)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
equal: s = t ∈ T
, 
abdmonoid: AbDMon
, 
grp_id: e
, 
grp_car: |g|
, 
loset: LOSet
, 
set_car: |p|
Definitions unfolded in proof : 
oalist: oal(a;b)
, 
dset_set: dset_set, 
mk_dset: mk_dset(T, eq)
, 
set_car: |p|
, 
pi1: fst(t)
, 
dset_list: s List
, 
set_prod: s × t
, 
dset_of_mon: g↓set
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
loset: LOSet
, 
poset: POSet{i}
, 
qoset: QOSet
, 
dset: DSet
, 
abdmonoid: AbDMon
, 
dmon: DMon
, 
mon: Mon
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
pi2: snd(t)
, 
so_apply: x[s]
, 
guard: {T}
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
strong-subtype-set, 
list_wf, 
set_car_wf, 
grp_car_wf, 
strong-subtype-list, 
strong-subtype-product, 
strong-subtype-self, 
assert_wf, 
sd_ordered_wf, 
map_wf, 
not_wf, 
mem_wf, 
dset_of_mon_wf, 
grp_id_wf, 
dset_of_mon_wf0, 
oalist_wf, 
dset_wf, 
strong-subtype_wf, 
equal_wf, 
abdmonoid_wf, 
loset_wf, 
strong-subtype_witness, 
mem_iff_exists, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
length_wf, 
pi2_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
strong-subtype-implies
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
productEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
productElimination, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberFormation, 
independent_functionElimination, 
isect_memberEquality, 
lambdaFormation, 
independent_pairFormation, 
dependent_pairFormation, 
unionElimination, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairEquality, 
imageElimination
Latex:
\mforall{}[a:LOSet].  \mforall{}[b1,b2:AbDMon].
    strong-subtype(|oal(a;b1)|;|oal(a;b2)|)  supposing  strong-subtype(|b1|;|b2|)  \mwedge{}  (e  =  e)
Date html generated:
2017_10_01-AM-10_01_41
Last ObjectModification:
2017_03_03-PM-01_04_10
Theory : polynom_2
Home
Index