Nuprl Lemma : strong-subtype-list

[A,B:Type].  strong-subtype(A List;B List) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  list: List strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q guard: {T} strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] prop: all: x:A. B[x] nat: false: False ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top and: P ∧ Q or: P ∨ Q cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b)
Lemmas referenced :  strong-subtype-implies subtype_rel_list list_wf exists_wf equal_wf strong-subtype_witness strong-subtype_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases nil_wf equal-wf-base-T product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int null_nil_lemma btrue_wf null_cons_lemma bfalse_wf and_wf null_wf btrue_neq_bfalse subtype_rel_transitivity cons_wf reduce_hd_cons_lemma hd_wf squash_wf length_wf length_cons_ge_one top_wf reduce_tl_cons_lemma tl_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination independent_isectElimination independent_pairFormation lambdaEquality setEquality cumulativity sqequalRule applyEquality because_Cache isect_memberEquality equalityTransitivity equalitySymmetry universeEquality setElimination rename lambdaFormation intWeakElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality dependent_functionElimination voidElimination voidEquality computeAll axiomEquality unionElimination baseClosed promote_hyp hypothesis_subsumption applyLambdaEquality dependent_set_memberEquality addEquality instantiate imageElimination addLevel levelHypothesis imageMemberEquality

Latex:
\mforall{}[A,B:Type].    strong-subtype(A  List;B  List)  supposing  strong-subtype(A;B)



Date html generated: 2017_04_14-AM-09_27_20
Last ObjectModification: 2017_02_27-PM-04_01_16

Theory : list_1


Home Index