Nuprl Lemma : eo-strict-forward-E-subtype2

[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E].  ({e':E| (loc(e') loc(e) ∈ Id)  (e <loc e')}  ⊆E)


Proof




Definitions occuring in Statement :  eo-strict-forward: eo>e event-ordering+: EO+(Info) es-locl: (e <loc e') es-loc: loc(e) es-E: E Id: Id subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q set: {x:A| B[x]}  universe: Type equal: t ∈ T
Lemmas :  eo-strict-forward-E Id_wf es-loc_wf es-locl_wf es-E_wf event-ordering+_subtype event-ordering+_wf assert_elim es-dom_wf subtype_base_sq bool_wf bool_subtype_base assert_wf eqtt_to_assert bor_wf es-bless_wf bnot_wf eq_id_wf or_wf not_wf equal_wf decidable__equal_Id iff_transitivity iff_weakening_uiff assert_of_band assert_of_bor assert-es-bless assert_of_bnot assert-eq-id eqff_to_assert bool_cases_sqequal assert-bnot false_wf
\mforall{}[Info:Type].  \mforall{}[eo:EO+(Info)].  \mforall{}[e:E].    (\{e':E|  (loc(e')  =  loc(e))  {}\mRightarrow{}  (e  <loc  e')\}    \msubseteq{}r  E)



Date html generated: 2015_07_17-PM-00_07_40
Last ObjectModification: 2015_01_28-AM-00_14_59

Home Index