Nuprl Lemma : fpf-contains-union-join-right2

[A,V:Type]. ∀[B:A ─→ Type].
  ∀eq:EqDecider(A). ∀f,h,g:a:A fp-> B[a] List. ∀R:(V List) ─→ V ─→ 𝔹.
    fpf-union-compatible(A;V;x.B[x];eq;R;f;g)  h ⊆⊆  h ⊆⊆ fpf-union-join(eq;R;f;g) 
    supposing fpf-single-valued(A;eq;x.B[x];V;g) 
  supposing ∀a:A. (B[a] ⊆V)


Proof




Definitions occuring in Statement :  fpf-union-join: fpf-union-join(eq;R;f;g) fpf-contains: f ⊆⊆ g fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g) fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g) fpf: a:A fp-> B[a] deq: EqDecider(T) list: List bool: 𝔹 uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  l_member_wf fpf-ap_wf list_wf assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf-contains_wf fpf-union-compatible_wf fpf-single-valued_wf bool_wf fpf_wf deq_wf all_wf subtype_rel_wf fpf-union-join-dom assert_elim subtype_base_sq bool_subtype_base fpf-union-contains2 fpf-union-join-ap l_all_iff fpf-cap_wf nil_wf fpf-union_wf subtype_rel_dep_function subtype_rel_list subtype_rel_self select_wf sq_stable__le int_seg_wf length_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot
\mforall{}[A,V:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,h,g:a:A  fp->  B[a]  List.  \mforall{}R:(V  List)  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbB{}.
        fpf-union-compatible(A;V;x.B[x];eq;R;f;g)  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  g  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  fpf-union-join(eq;R;f;g) 
        supposing  fpf-single-valued(A;eq;x.B[x];V;g) 
    supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  V)



Date html generated: 2015_07_17-AM-11_07_49
Last ObjectModification: 2015_01_28-AM-07_48_24

Home Index