Nuprl Lemma : fpf-union-join-member

[A:Type]
  ∀eq:EqDecider(A)
    ∀[B:A ─→ Type]
      ∀f,g:a:A fp-> B[a] List. ∀R:∩a:A. ((B[a] List) ─→ B[a] ─→ 𝔹). ∀a:A.
        ∀x:B[a]. ((x ∈ fpf-union-join(eq;R;f;g)(a))  (((↑a ∈ dom(f)) ∧ (x ∈ f(a))) ∨ ((↑a ∈ dom(g)) ∧ (x ∈ g(a))))) 
        supposing ↑a ∈ dom(fpf-union-join(eq;R;f;g))


Proof




Definitions occuring in Statement :  fpf-union-join: fpf-union-join(eq;R;f;g) fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_member: (x ∈ l) list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q isect: x:A. B[x] function: x:A ─→ B[x] universe: Type
Lemmas :  assert_witness fpf-dom_wf fpf-union-join_wf subtype-fpf2 top_wf subtype_top list_wf l_member_wf fpf-ap_wf assert_wf bool_wf fpf_wf deq_wf fpf-union-join-ap eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot false_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse nil_wf btrue_neq_bfalse member_append filter_wf5 subtype_rel_dep_function subtype_rel_self set_wf member_filter or_wf true_wf
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A)
        \mforall{}[B:A  {}\mrightarrow{}  Type]
            \mforall{}f,g:a:A  fp->  B[a]  List.  \mforall{}R:\mcap{}a:A.  ((B[a]  List)  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  \mBbbB{}).  \mforall{}a:A.
                \mforall{}x:B[a]
                    ((x  \mmember{}  fpf-union-join(eq;R;f;g)(a))
                    {}\mRightarrow{}  (((\muparrow{}a  \mmember{}  dom(f))  \mwedge{}  (x  \mmember{}  f(a)))  \mvee{}  ((\muparrow{}a  \mmember{}  dom(g))  \mwedge{}  (x  \mmember{}  g(a))))) 
                supposing  \muparrow{}a  \mmember{}  dom(fpf-union-join(eq;R;f;g))



Date html generated: 2015_07_17-AM-11_07_33
Last ObjectModification: 2015_01_28-AM-07_48_39

Home Index