Nuprl Lemma : lnk-decl_wf-hasloc

[l:IdLnk]. ∀[dt:tg:Id fp-> Type].  (lnk-decl(l;dt) ∈ k:{k:Knd| ↑hasloc(k;destination(l))}  fp-> Type)


Proof




Definitions occuring in Statement :  lnk-decl: lnk-decl(l;dt) fpf: a:A fp-> B[a] hasloc: hasloc(k;i) ldst: destination(l) Knd: Knd IdLnk: IdLnk Id: Id assert: b uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  universe: Type
Lemmas :  map_wf Id_wf Knd_wf assert_wf hasloc_wf ldst_wf l_member_wf set_wf list_wf IdLnk_wf rcv_wf isrcv_rcv_lemma lnk_rcv_lemma bnot_wf eq_id_wf not_wf equal_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert-eq-id member_map subtype_base_sq set_subtype_base union_subtype_base product_subtype_base atom2_subtype_base
\mforall{}[l:IdLnk].  \mforall{}[dt:tg:Id  fp->  Type].    (lnk-decl(l;dt)  \mmember{}  k:\{k:Knd|  \muparrow{}hasloc(k;destination(l))\}    fp->  Typ\000Ce)



Date html generated: 2015_07_17-AM-11_15_20
Last ObjectModification: 2015_01_28-AM-07_40_04

Home Index