{ [Info,T,S:Type]. [x:T].
    f:T  EClass(S). (return-class(x) >zf[z] = f[x]) }

{ Proof }



Definitions occuring in Statement :  return-class: return-class(x) bind-class: X >xY[x] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] function: x:A  B[x] universe: Type equal: s = t
Definitions :  implies: P  Q record-select: r.x set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) top: Top so_lambda: x.t[x] pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B universe: Type uall: [x:A]. B[x] isect: x:A. B[x] all: x:A. B[x] lambda: x.A[x] so_lambda: x y.t[x; y] function: x:A  B[x] member: t  T apply: f a axiom: Ax equal: s = t bind-class: X >xY[x] return-class: return-class(x) so_apply: x[s] RepUR: Error :RepUR,  CollapseTHEN: Error :CollapseTHEN,  BHyp: Error :BHyp,  Auto: Error :Auto,  eclass: EClass(A[eo; e]) ORELSE: Error :ORELSE,  Try: Error :Try,  CollapseTHENA: Error :CollapseTHENA,  nil: [] cons: [car / cdr] bag-append: as + bs es-le-before: loc(e) es-le: e loc e'  es-first: first(e) exists: x:A. B[x] iff: P  Q real: grp_car: |g| int: list_ind: list_ind def length: ||as|| select: l[i] record: record(x.T[x]) sq_type: SQType(T) es-loc: loc(e) Id: Id es-causl: (e < e') es-causle: e c e' eclass-val: X(e) es-init: es-init(es;e) true: True es-pred: pred(e) nat: null: null(as) es-locl: (e <loc e') union: left + right or: P  Q filter: filter(P;l) l_member: (x  l) void: Void false: False l_all: (xL.P[x]) cand: A c B prop: atom: Atom es-base-E: es-base-E(es) token: "$token" bnot: b bfalse: ff sqequal: s ~ t list: type List tl: tl(l) btrue: tt hd: hd(l) bool: add: n + m natural_number: $n fpf-dom: x  dom(f) rcv: rcv(l,tg) locl: locl(a) Knd: Knd squash: T tag-by: zT rev_implies: P  Q fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) es-E-interface: Error :es-E-interface,  fpf-cap: f(x)?z permutation: permutation(T;L1;L2) listp: A List ndlist: ndlist(T) limited-type: LimitedType quotient: x,y:A//B[x; y] guard: {T} existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: Error :collect-event,  decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) sq_stable: SqStable(P) label: ...$L... t MaAuto: Error :MaAuto,  intensional-universe: IType record-update: r[x := v] eo-restrict: eo-restrict(eo;P) eo-forward: eo.e bag-combine: xbs.f[x] empty-bag: {} IdLnk: IdLnk rationals: tactic: Error :tactic,  single-bag: {x} eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q SplitOn: Error :SplitOn,  RepeatFor: Error :RepeatFor,  AssertBY: Error :AssertBY
Lemmas :  bag-combine-empty-left bag-combine-empty-right empty-bag_wf eo-forward-trivial single-bag_wf bool_cases eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf bag-combine-single-left rev_implies_wf iff_wf bag-combine-append-left bag-append-empty bag-combine_wf eo-forward_wf intensional-universe_wf member-eo-forward-E list_subtype_base length_nil pos_length3 sq_stable_from_decidable decidable__es-le hd_wf bag-append_wf bool_wf bool_subtype_base true_wf ifthenelse_wf permutation_wf squash_wf subtype_rel_bag subtype_rel_set subtype_rel_sets es-le-before_wf es-loc_wf bfalse_wf ge_wf le_wf btrue_neq_bfalse non_neg_length length_wf1 es-le-before-not-null assert_wf l_member_wf es-le_wf not_wf l_all_wf subtype_rel_self es-base-E_wf es-first_wf es-le-before_wf2 tl_wf list_set_type btrue_wf hd-es-le-before-is-first false_wf es-locl_wf es-causle-le es-causl_wf Id_wf subtype_base_sq set_subtype_base length_wf_nat nat_wf top_wf tl-es-le-before list-subtype-bag es-E_wf bag_wf eclass_wf Error :es-interface-top,  subtype_rel_wf event-ordering+_wf member_wf event-ordering+_inc bind-class_wf return-class_wf

\mforall{}[Info,T,S:Type].  \mforall{}[x:T].    \mforall{}f:T  {}\mrightarrow{}  EClass(S).  (return-class(x)  >z>  f[z]  =  f[x])


Date html generated: 2011_08_16-AM-11_36_00
Last ObjectModification: 2011_06_20-AM-00_29_32

Home Index