Nuprl Lemma : hdf-halted-compose2
∀[A,B,C:Type]. ∀[X1:hdataflow(A;B ─→ bag(C))]. ∀[X2:hdataflow(A;B)].
  uiff(↑hdf-halted(X1 o X2);↑(hdf-halted(X1) ∨bhdf-halted(X2))) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-compose2: X o Y
, 
hdf-halted: hdf-halted(P)
, 
hdataflow: hdataflow(A;B)
, 
bor: p ∨bq
, 
valueall-type: valueall-type(T)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
bag: bag(T)
Lemmas : 
assert_of_bor, 
hdf-halted_wf, 
bag_wf, 
assert_witness, 
bor_wf, 
assert_wf, 
hdf-compose2_wf, 
valueall-type_wf, 
hdataflow_wf, 
bnot_wf, 
not_wf, 
or_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
hdf_halted_halt_red_lemma, 
equal_wf, 
bool_cases_sqequal, 
assert-bnot, 
hdf_halted_run_red_lemma
\mforall{}[A,B,C:Type].  \mforall{}[X1:hdataflow(A;B  {}\mrightarrow{}  bag(C))].  \mforall{}[X2:hdataflow(A;B)].
    uiff(\muparrow{}hdf-halted(X1  o  X2);\muparrow{}(hdf-halted(X1)  \mvee{}\msubb{}hdf-halted(X2)))  supposing  valueall-type(C)
Date html generated:
2015_07_17-AM-08_05_34
Last ObjectModification:
2015_01_27-PM-00_16_13
Home
Index