Nuprl Lemma : sq_stable__s-group-axioms
∀[sg:s-GroupStructure]. SqStable(s-group-axioms(sg))
Proof
Definitions occuring in Statement : 
s-group-axioms: s-group-axioms(sg)
, 
s-group-structure: s-GroupStructure
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
s-group-axioms: s-group-axioms(sg)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
prop: ℙ
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
false: False
Lemmas referenced : 
sq_stable__and, 
uall_wf, 
ss-point_wf, 
s-group-structure_subtype1, 
ss-eq_wf, 
sg-op_wf, 
sg-id_wf, 
sg-inv_wf, 
sq_stable__uall, 
sq_stable__ss-eq, 
ss-sep_wf, 
squash_wf, 
s-group-axioms_wf, 
s-group-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
productEquality, 
independent_functionElimination, 
dependent_functionElimination, 
voidElimination, 
lambdaFormation, 
productElimination, 
independent_pairEquality
Latex:
\mforall{}[sg:s-GroupStructure].  SqStable(s-group-axioms(sg))
Date html generated:
2017_10_02-PM-03_24_41
Last ObjectModification:
2017_06_23-AM-11_20_16
Theory : constructive!algebra
Home
Index