Nuprl Lemma : itersetfun-subset-fixpoint
∀G:Set{i:l} ⟶ Set{i:l}
  ((∀a,b:Set{i:l}.  ((a ⊆ b) 
⇒ (G[a] ⊆ G[b])))
  
⇒ (∀X:Set{i:l}. ((G[X] ⊆ X) 
⇒ (∀a:Set{i:l}. (itersetfun(x.G[x];a) ⊆ X)))))
Proof
Definitions occuring in Statement : 
itersetfun: itersetfun(s.G[s];a)
, 
setsubset: (a ⊆ b)
, 
Set: Set{i:l}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
guard: {T}
, 
top: Top
, 
set-function: set-function{i:l}(s; x.f[x])
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
itersetfun: itersetfun(s.G[s];a)
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
setsubset-iff, 
setmem_functionality, 
coSet-seteq-Set, 
setmem-mk-set-sq, 
seteq_wf, 
seteq_weakening, 
itersetfun_functionality, 
seteq_functionality, 
setmem-setunionfun, 
coSet-mem-Set-implies-Set, 
coSet_wf, 
setunionfun_wf, 
setsubset-iff2, 
setmem_wf, 
setunionfun_wf2, 
all_wf, 
mk-set_wf, 
setsubset_transitivity, 
set-subtype-coSet, 
Set_wf, 
itersetfun_wf, 
setsubset_wf, 
set-induction
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_pairFormation, 
independent_isectElimination, 
functionExtensionality, 
productElimination, 
setEquality, 
rename, 
setElimination, 
instantiate, 
universeEquality, 
functionEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}G:Set\{i:l\}  {}\mrightarrow{}  Set\{i:l\}
    ((\mforall{}a,b:Set\{i:l\}.    ((a  \msubseteq{}  b)  {}\mRightarrow{}  (G[a]  \msubseteq{}  G[b])))
    {}\mRightarrow{}  (\mforall{}X:Set\{i:l\}.  ((G[X]  \msubseteq{}  X)  {}\mRightarrow{}  (\mforall{}a:Set\{i:l\}.  (itersetfun(x.G[x];a)  \msubseteq{}  X)))))
Date html generated:
2018_07_29-AM-10_06_03
Last ObjectModification:
2018_07_18-PM-10_13_53
Theory : constructive!set!theory
Home
Index