Nuprl Lemma : case-term-equality-right

[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, (phi ∨ psi) ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}]. ∀[v:{Gamma, psi ⊢ _:A}].
  ∀[x:{Gamma, (phi ∨ psi) ⊢ _:A}]. Gamma, psi ⊢ v=x:A supposing Gamma, (phi ∨ psi) ⊢ (u ∨ v)=x:A 
  supposing Gamma, (phi ∧ psi) ⊢ u=v:A


Proof




Definitions occuring in Statement :  case-term: (u ∨ v) same-cubical-term: X ⊢ u=v:A context-subset: Gamma, phi face-or: (a ∨ b) face-and: (a ∧ b) face-type: 𝔽 cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a same-cubical-term: X ⊢ u=v:A subtype_rel: A ⊆B all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q or: P ∨ Q bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] prop: so_apply: x[s] guard: {T}
Lemmas referenced :  case-term-equal-right case-term_wf same-cubical-term_wf context-subset_wf face-or_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j context-subset-subtype face-and_wf face-or-eq-1 face-and-eq-1 cubical-term-at_wf face-type_wf lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf lattice-1_wf I_cube_wf fset_wf nat_wf subset-cubical-term2 face-term-implies-subset face-term-and-implies1 context-subset-subtype-or face-term-and-implies2 context-subset-subtype-or2 cubical-term_wf cubical-type_wf cubical_set_wf subset-cubical-term face-term-implies-or2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination universeIsType instantiate applyEquality sqequalRule inhabitedIsType equalityTransitivity equalitySymmetry because_Cache lambdaFormation_alt dependent_functionElimination productElimination independent_functionElimination inlFormation_alt equalityIstype lambdaEquality_alt productEquality cumulativity isectEquality

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].
\mforall{}[v:\{Gamma,  psi  \mvdash{}  \_:A\}].
    \mforall{}[x:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_:A\}].  Gamma,  psi  \mvdash{}  v=x:A  supposing  Gamma,  (phi  \mvee{}  psi)  \mvdash{}  (u  \mvee{}  v)=x:A 
    supposing  Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  u=v:A



Date html generated: 2020_05_20-PM-03_12_18
Last ObjectModification: 2020_04_07-PM-03_11_48

Theory : cubical!type!theory


Home Index