Nuprl Lemma : case-term-equality-right
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, (phi ∨ psi) ⊢ _}]. ∀[u:{Gamma, phi ⊢ _:A}]. ∀[v:{Gamma, psi ⊢ _:A}].
  ∀[x:{Gamma, (phi ∨ psi) ⊢ _:A}]. Gamma, psi ⊢ v=x:A supposing Gamma, (phi ∨ psi) ⊢ (u ∨ v)=x:A 
  supposing Gamma, (phi ∧ psi) ⊢ u=v:A
Proof
Definitions occuring in Statement : 
case-term: (u ∨ v)
, 
same-cubical-term: X ⊢ u=v:A
, 
context-subset: Gamma, phi
, 
face-or: (a ∨ b)
, 
face-and: (a ∧ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
same-cubical-term: X ⊢ u=v:A
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
case-term-equal-right, 
case-term_wf, 
same-cubical-term_wf, 
context-subset_wf, 
face-or_wf, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
context-subset-subtype, 
face-and_wf, 
face-or-eq-1, 
face-and-eq-1, 
cubical-term-at_wf, 
face-type_wf, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
lattice-1_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
subset-cubical-term2, 
face-term-implies-subset, 
face-term-and-implies1, 
context-subset-subtype-or, 
face-term-and-implies2, 
context-subset-subtype-or2, 
cubical-term_wf, 
cubical-type_wf, 
cubical_set_wf, 
subset-cubical-term, 
face-term-implies-or2
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation_alt, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
inlFormation_alt, 
equalityIstype, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
isectEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:A\}].
\mforall{}[v:\{Gamma,  psi  \mvdash{}  \_:A\}].
    \mforall{}[x:\{Gamma,  (phi  \mvee{}  psi)  \mvdash{}  \_:A\}].  Gamma,  psi  \mvdash{}  v=x:A  supposing  Gamma,  (phi  \mvee{}  psi)  \mvdash{}  (u  \mvee{}  v)=x:A 
    supposing  Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  u=v:A
Date html generated:
2020_05_20-PM-03_12_18
Last ObjectModification:
2020_04_07-PM-03_11_48
Theory : cubical!type!theory
Home
Index