Nuprl Lemma : csm-fiber-path
∀[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[p:{X ⊢ _:Fiber(w;a)}]. ∀[H:j⊢]. ∀[s:H j⟶ X].
  ((fiber-path(p))s = fiber-path((p)s) ∈ {H ⊢ _:(Path_(A)s (a)s app((w)s; fiber-member((p)s)))})
Proof
Definitions occuring in Statement : 
fiber-path: fiber-path(p)
, 
fiber-member: fiber-member(p)
, 
cubical-fiber: Fiber(w;a)
, 
path-type: (Path_A a b)
, 
cubical-app: app(w; u)
, 
cubical-fun: (A ⟶ B)
, 
csm-ap-term: (t)s
, 
cubical-term: {X ⊢ _:A}
, 
csm-ap-type: (AF)s
, 
cubical-type: {X ⊢ _}
, 
cube_set_map: A ⟶ B
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
cubical-fiber: Fiber(w;a)
, 
fiber-path: fiber-path(p)
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
cc-fst: p
, 
csm-id-adjoin: [u]
, 
csm-ap: (s)x
, 
csm-id: 1(X)
, 
csm-adjoin: (s;u)
, 
pi1: fst(t)
, 
csm-ap-term: (t)s
, 
fiber-member: fiber-member(p)
, 
cubical-fst: p.1
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
csm-ap-cubical-snd, 
cc-snd_wf, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
cubical-type-cumulativity2, 
cubical-fun_wf, 
cc-fst_wf, 
csm-cubical-fun, 
cubical-term-eqcd, 
cubical-app_wf_fun, 
csm-ap-type_wf, 
cube_set_map_wf, 
istype-cubical-term, 
cubical-fiber_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-term_wf, 
csm-cubical-fiber, 
fiber-member_wf, 
path-type_wf, 
squash_wf, 
true_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
csm-id-adjoin_wf, 
cubical-fst_wf, 
csm_id_adjoin_fst_type_lemma, 
csm-id_wf, 
csm-cubical-app, 
csm_id_adjoin_fst_term_lemma, 
cc_snd_csm_id_adjoin_lemma, 
csm_id_ap_term_lemma, 
equal_wf, 
istype-universe, 
csm-path-type, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
instantiate, 
applyEquality, 
hypothesis, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
hyp_replacement, 
universeIsType, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
Error :memTop, 
universeEquality, 
independent_functionElimination
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:Fiber(w;a)\}].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  X].
    ((fiber-path(p))s  =  fiber-path((p)s))
Date html generated:
2020_05_20-PM-03_24_54
Last ObjectModification:
2020_04_20-AM-10_03_03
Theory : cubical!type!theory
Home
Index