Nuprl Lemma : csm-fiber-path

[X:j⊢]. ∀[T,A:{X ⊢ _}]. ∀[w:{X ⊢ _:(T ⟶ A)}]. ∀[a:{X ⊢ _:A}]. ∀[p:{X ⊢ _:Fiber(w;a)}]. ∀[H:j⊢]. ∀[s:H j⟶ X].
  ((fiber-path(p))s fiber-path((p)s) ∈ {H ⊢ _:(Path_(A)s (a)s app((w)s; fiber-member((p)s)))})


Proof




Definitions occuring in Statement :  fiber-path: fiber-path(p) fiber-member: fiber-member(p) cubical-fiber: Fiber(w;a) path-type: (Path_A b) cubical-app: app(w; u) cubical-fun: (A ⟶ B) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] cubical-fiber: Fiber(w;a) fiber-path: fiber-path(p) member: t ∈ T subtype_rel: A ⊆B all: x:A. B[x] and: P ∧ Q uimplies: supposing a squash: T true: True prop: cubical-type: {X ⊢ _} csm-ap-type: (AF)s cc-fst: p csm-id-adjoin: [u] csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) pi1: fst(t) csm-ap-term: (t)s fiber-member: fiber-member(p) cubical-fst: p.1 guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  csm-ap-cubical-snd cc-snd_wf cubical_set_cumulativity-i-j csm-ap-term_wf cube-context-adjoin_wf cubical-type-cumulativity2 cubical-fun_wf cc-fst_wf csm-cubical-fun cubical-term-eqcd cubical-app_wf_fun csm-ap-type_wf cube_set_map_wf istype-cubical-term cubical-fiber_wf cubical-type_wf cubical_set_wf cubical-term_wf csm-cubical-fiber fiber-member_wf path-type_wf squash_wf true_wf subset-cubical-term2 sub_cubical_set_self csm-id-adjoin_wf cubical-fst_wf csm_id_adjoin_fst_type_lemma csm-id_wf csm-cubical-app csm_id_adjoin_fst_term_lemma cc_snd_csm_id_adjoin_lemma csm_id_ap_term_lemma equal_wf istype-universe csm-path-type subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution introduction extract_by_obid isectElimination thin because_Cache hypothesisEquality instantiate applyEquality hypothesis sqequalRule equalityTransitivity equalitySymmetry dependent_functionElimination dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination independent_isectElimination lambdaEquality_alt hyp_replacement universeIsType imageElimination natural_numberEquality imageMemberEquality baseClosed Error :memTop,  universeEquality independent_functionElimination

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T,A:\{X  \mvdash{}  \_\}].  \mforall{}[w:\{X  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[a:\{X  \mvdash{}  \_:A\}].  \mforall{}[p:\{X  \mvdash{}  \_:Fiber(w;a)\}].  \mforall{}[H:j\mvdash{}].
\mforall{}[s:H  j{}\mrightarrow{}  X].
    ((fiber-path(p))s  =  fiber-path((p)s))



Date html generated: 2020_05_20-PM-03_24_54
Last ObjectModification: 2020_04_20-AM-10_03_03

Theory : cubical!type!theory


Home Index