Nuprl Lemma : equiv-term-0-subset-1

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}].
  ∀[psi:{G ⊢ _:𝔽}]
    ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[a:{G ⊢ _:A}]. ∀[t,c:Top]. ∀[cF:G +⊢ Compositon(Fiber(equiv-fun(f);a))].
      (equiv [phi ⊢→ (t,  c)] transprt(G;(cF)p;contr-center(equiv-contr(f;a))) ∈ {G ⊢ _:Fiber(equiv-fun(f);a)}) 
    supposing psi 1(𝔽) ∈ {G ⊢ _:𝔽
  supposing phi 0(𝔽) ∈ {G ⊢ _:𝔽}


Proof




Definitions occuring in Statement :  equiv-term: equiv [phi ⊢→ (t,  c)] a transprt: transprt(G;cA;a0) csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) equiv-contr: equiv-contr(f;a) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-fiber: Fiber(w;a) contr-center: contr-center(c) context-subset: Gamma, phi face-1: 1(𝔽) face-0: 0(𝔽) face-type: 𝔽 interval-type: 𝕀 cc-fst: p cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] top: Top equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T prop: squash: T subtype_rel: A ⊆B and: P ∧ Q guard: {T} true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q path-type: (Path_A b) cubical-subset: cubical-subset
Lemmas referenced :  equiv-term-0 equal_wf squash_wf true_wf istype-universe cubical-fiber_wf equiv-fun_wf cubical-term-eqcd empty-context-subset-lemma3 subtype_rel-equal thin-context-subset face-0_wf context-subset_wf cubical-term_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j equiv-term-subset composition-structure_wf istype-top istype-cubical-term cubical-equiv_wf cubical-type_wf face-1_wf face-type_wf cubical_set_wf subset-cubical-term sub_cubical_set_self sub_cubical_set_wf iff_weakening_equal empty-context-subset-lemma6 composition-structure-cumulativity subset-cubical-type context-subset-is-subset context-1-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis hyp_replacement equalitySymmetry sqequalRule applyEquality instantiate lambdaEquality_alt imageElimination equalityTransitivity universeIsType universeEquality Error :memTop,  dependent_set_memberEquality_alt independent_pairFormation productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename productElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination independent_pairEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}]
        \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[t,c:Top].
        \mforall{}[cF:G  +\mvdash{}  Compositon(Fiber(equiv-fun(f);a))].
            (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  =  transprt(G;(cF)p;contr-center(equiv-contr(f;a)))) 
        supposing  psi  =  1(\mBbbF{}) 
    supposing  phi  =  0(\mBbbF{})



Date html generated: 2020_05_20-PM-05_36_04
Last ObjectModification: 2020_04_21-PM-01_46_22

Theory : cubical!type!theory


Home Index