Nuprl Lemma : equiv-term-subset

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
[c:{G, phi ⊢ _:(Path_A app(equiv-fun(f); t))}]. ∀[cF:G ⊢ Compositon(Fiber(equiv-fun(f);a))]. ∀[psi:{G ⊢ _:𝔽}].
  (equiv [phi ⊢→ (t,  c)] equiv [phi ⊢→ (t,  c)] a ∈ {G, psi ⊢ _:Fiber(equiv-fun(f);a)})


Proof




Definitions occuring in Statement :  equiv-term: equiv [phi ⊢→ (t,  c)] a composition-structure: Gamma ⊢ Compositon(A) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) cubical-fiber: Fiber(w;a) path-type: (Path_A b) context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv-term: equiv [phi ⊢→ (t,  c)] a all: x:A. B[x] implies:  Q let: let composition-structure: Gamma ⊢ Compositon(A) guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) cubical-path-app: pth r cubicalpath-app: pth r squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-comp-structure: (cA)tau csm-comp: F compose: g
Lemmas referenced :  cubical-app_wf_fun context-subset_wf thin-context-subset cubical-fun-subset equiv-fun_wf subset-cubical-term context-subset-is-subset cubical-fun_wf equiv-contr_wf cubical-fiber_wf fiber-subset cubical-term-eqcd fiber-point_wf context-subset-term-subtype comp_term_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval csm-comp-structure_wf composition-structure_wf istype-cubical-term path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-equiv_wf cubical-type_wf face-type_wf cubical_set_wf contr-center_wf contr-path_wf contractible-type-subset contractible-type_wf cubical-path-app_wf csm-ap-term_wf csm-path-type cc-snd_wf cubical-path-app-0 cubical-path-ap-id-adjoin equal_wf squash_wf true_wf istype-universe csm-ap-id-type subset-cubical-type subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm-id_wf comp_term-subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule Error :memTop,  applyEquality independent_isectElimination inhabitedIsType lambdaFormation_alt rename equalityTransitivity equalitySymmetry lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement instantiate setElimination equalityIstype dependent_functionElimination independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination dependent_set_memberEquality_alt

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].
\mforall{}[cF:G  \mvdash{}  Compositon(Fiber(equiv-fun(f);a))].  \mforall{}[psi:\{G  \mvdash{}  \_:\mBbbF{}\}].
    (equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a  =  equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a)



Date html generated: 2020_05_20-PM-05_35_28
Last ObjectModification: 2020_04_18-PM-11_02_13

Theory : cubical!type!theory


Home Index