Nuprl Lemma : comp_term-subset

[Gamma:j⊢]. ∀[phi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma.𝕀 ⊢ _}]. ∀[cA:Gamma.𝕀 ⊢ Compositon(A)]. ∀[u:{Gamma, phi.𝕀 ⊢ _:A}].
[a0:{Gamma ⊢ _:(A)[0(𝕀)][phi |⟶ (u)[0(𝕀)]]}]. ∀[psi:{Gamma ⊢ _:𝔽}].
  (comp cA [phi ⊢→ u] a0 comp cA [phi ⊢→ u] a0 ∈ {Gamma, psi ⊢ _:(A)[1(𝕀)]})


Proof




Definitions occuring in Statement :  comp_term: comp cA [phi ⊢→ u] a0 composition-structure: Gamma ⊢ Compositon(A) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B csm-id-adjoin: [u] csm-id: 1(X) guard: {T} interval-1: 1(𝕀) csm-ap-term: (t)s interval-type: 𝕀 csm+: tau+ csm-adjoin: (s;u) csm-ap: (s)x cc-snd: q cc-fst: p constant-cubical-type: (X) csm-ap-type: (AF)s csm-comp: F pi2: snd(t) compose: g pi1: fst(t) cubical-type: {X ⊢ _} uimplies: supposing a prop: constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T true: True all: x:A. B[x] implies:  Q composition-structure: Gamma ⊢ Compositon(A) comp_trm: comp_trm composition-function: composition-function{j:l,i:l}(Gamma;A) csm-comp-structure: (cA)tau cube-context-adjoin: X.A cc-adjoin-cube: (v;u) cubical-term-at: u(a) and: P ∧ Q interval-0: 0(𝕀)
Lemmas referenced :  csm-comp_term context-subset_wf csm-id_wf csm-context-subset-subtype2 constrained-cubical-term_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf csm-id-adjoin_wf-interval-0 cubical-type-cumulativity2 cubical_set_cumulativity-i-j csm-ap-term_wf thin-context-subset-adjoin istype-cubical-term composition-structure_wf cubical-type_wf face-type_wf cubical_set_wf thin-context-subset csm-id-adjoin_wf-interval-1 cubical-term-eqcd equal_wf csm-face-type context-subset-term-subtype csm-id-adjoin_wf interval-1_wf cube_set_map_subtype3 sub_cubical_set_self context-iterated-subset0 subset-cubical-term csm-ap-id-term context-iterated-subset1 sub_cubical_set_wf context-subset-is-subset squash_wf true_wf istype-universe comp_term_wf comp_trm_wf composition-function_wf csm-context-subset-subtype3 cube_set_map_wf I_cube_wf fset_wf nat_wf I_cube_pair_redex_lemma csm-ap_wf cc-adjoin-cube_wf subset-I_cube csm-equal csm-context-subset-subtype cubical-term-equal sub_cubical_set_functionality cubical-term-at_wf subset-cubical-type sub_cubical_set_transitivity context-subset-swap sub_cubical_set_functionality2 context-iterated-subset2
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache sqequalRule inhabitedIsType universeIsType instantiate equalityTransitivity equalitySymmetry setElimination rename productElimination cumulativity setEquality independent_isectElimination Error :memTop,  hyp_replacement applyLambdaEquality imageMemberEquality baseClosed imageElimination lambdaEquality_alt universeEquality natural_numberEquality lambdaFormation_alt equalityIstype dependent_functionElimination independent_functionElimination functionExtensionality independent_pairFormation dependent_set_memberEquality_alt

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[cA:Gamma.\mBbbI{}  \mvdash{}  Compositon(A)].
\mforall{}[u:\{Gamma,  phi.\mBbbI{}  \mvdash{}  \_:A\}].  \mforall{}[a0:\{Gamma  \mvdash{}  \_:(A)[0(\mBbbI{})][phi  |{}\mrightarrow{}  (u)[0(\mBbbI{})]]\}].  \mforall{}[psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0  =  comp  cA  [phi  \mvdash{}\mrightarrow{}  u]  a0)



Date html generated: 2020_05_20-PM-04_40_06
Last ObjectModification: 2020_04_18-PM-01_33_22

Theory : cubical!type!theory


Home Index