Nuprl Lemma : fill-path_wf_const

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[x,y:{Gamma ⊢ _:A}]. ∀[z:{Gamma.𝕀 ⊢ _:(A)p}].
  (fill-path(Gamma;(A)p;(cA)p;x;y;z) ∈ {Gamma ⊢ _:(Path_A app(transport-fun(Gamma;(A)p;(cA)p); y))}) supposing 
     (((z)[0(𝕀)] app(rev-transport-fun(Gamma;(A)p;(cA)p); x) ∈ {Gamma ⊢ _:((A)p)[0(𝕀)]}) and 
     ((z)[1(𝕀)] y ∈ {Gamma ⊢ _:((A)p)[0(𝕀)]}))


Proof




Definitions occuring in Statement :  fill-path: fill-path(Gamma;A;cA;x;y;z) rev-transport-fun: rev-transport-fun(Gamma;A;cA) transport-fun: transport-fun(Gamma;A;cA) csm-composition: (comp)sigma composition-op: Gamma ⊢ CompOp(A) path-type: (Path_A b) interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-app: app(w; u) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q cubical-type: {X ⊢ _} cc-fst: p csm-ap-type: (AF)s interval-0: 0(𝕀) csm-id-adjoin: [u] csm-ap: (s)x csm-id: 1(X) csm-adjoin: (s;u) pi1: fst(t) all: x:A. B[x]
Lemmas referenced :  fill-path_wf csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf csm-composition_wf equal_wf cubical-term_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 squash_wf true_wf csm-ap-type-fst-id-adjoin subtype_rel_self iff_weakening_equal csm-ap-term_wf csm-id-adjoin_wf-interval-0 cubical-app_wf_fun rev-transport-fun_wf subset-cubical-term2 sub_cubical_set_self cubical-fun_wf csm-id-adjoin_wf-interval-1 csm_id_adjoin_fst_type_lemma istype-universe cubical-type_wf csm-ap-id-type csm-id_wf composition-op_wf cubical_set_wf path-type_wf transport-fun_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate applyEquality because_Cache sqequalRule lambdaEquality_alt imageElimination closedConclusion universeEquality equalityTransitivity equalitySymmetry universeIsType Error :memTop,  natural_numberEquality imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination hyp_replacement setElimination rename equalityIstype dependent_functionElimination inhabitedIsType

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[x,y:\{Gamma  \mvdash{}  \_:A\}].
\mforall{}[z:\{Gamma.\mBbbI{}  \mvdash{}  \_:(A)p\}].
    (fill-path(Gamma;(A)p;(cA)p;x;y;z)
      \mmember{}  \{Gamma  \mvdash{}  \_:(Path\_A  x  app(transport-fun(Gamma;(A)p;(cA)p);  y))\})  supposing 
          (((z)[0(\mBbbI{})]  =  app(rev-transport-fun(Gamma;(A)p;(cA)p);  x))  and 
          ((z)[1(\mBbbI{})]  =  y))



Date html generated: 2020_05_20-PM-04_56_59
Last ObjectModification: 2020_04_11-PM-06_37_58

Theory : cubical!type!theory


Home Index