Nuprl Lemma : eu-col-connect

e:EuclideanPlane. ∀a,b,c,d:Point.  (Colinear(a;b;c)  Colinear(c;b;d)  Colinear(a;b;d))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T euclidean-plane: EuclideanPlane uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] cand: c∧ B rev_implies:  Q guard: {T} or: P ∨ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  euclidean-plane_wf eu-colinear_wf lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma list_ind_nil_lemma list_ind_cons_lemma eu-colinear-is-colinear-set exists_wf not_wf equal_wf l_member_wf cons_member nil_wf eu-point_wf cons_wf eu-colinear-append eu-colinear-def
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality isectElimination hypothesis productElimination independent_functionElimination dependent_pairFormation because_Cache independent_pairFormation sqequalRule inrFormation inlFormation productEquality lambdaEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality introduction imageMemberEquality baseClosed

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (Colinear(a;b;c)  {}\mRightarrow{}  Colinear(c;b;d)  {}\mRightarrow{}  Colinear(a;b;d))



Date html generated: 2016_05_18-AM-06_45_47
Last ObjectModification: 2016_01_16-PM-10_29_56

Theory : euclidean!geometry


Home Index