Nuprl Lemma : geo-SCS-out

e:EuclideanPlane. ∀a:Point. ∀x,b:{b:Point| a ≠ b} .  out(a bSCS(b;a;a;x))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-SCS: SCS(a;b;c;d) euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q squash: T subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] basic-geometry: BasicGeometry geo-out: out(p ab) not: ¬A basic-geometry-: BasicGeometry- false: False iff: ⇐⇒ Q
Lemmas referenced :  geo-SCS_wf sq_stable__geo-sep geo-between-trivial2 geo-sep_wf geo-between_wf set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-congruent_wf geo-SCO_wf geo-colinear_wf sq_stable__geo-out geo-congruent-sep not_wf equal_wf geo-simple-colinear-cases false_wf stable__false geo-between-symmetry geo-between-same-side geo-sep-sym geo-between-inner-trans geo-between-exchange3 geo-between-same geo-sep_functionality geo-eq_weakening geo-sep-irrefl' geo-between_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination setElimination rename because_Cache hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination independent_pairFormation dependent_set_memberEquality productEquality applyEquality instantiate independent_isectElimination lambdaEquality functionEquality productElimination setEquality equalityTransitivity equalitySymmetry voidElimination promote_hyp

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}x,b:\{b:Point|  a  \mneq{}  b\}  .    out(a  bSCS(b;a;a;x))



Date html generated: 2018_05_22-PM-00_00_24
Last ObjectModification: 2018_03_30-PM-06_16_08

Theory : euclidean!plane!geometry


Home Index