Nuprl Lemma : hp-right-angles-out

e:EuclideanPlane. ∀a,b,p1,p2:Point.
  (((Rbap1 ∧ Rbap2) ∧ p1 ab ∧ (p1 leftof ab ⇐⇒ p2 leftof ab) ∧ (p1 leftof ba ⇐⇒ p2 leftof ba))  out(a p1p2))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) euclidean-plane: EuclideanPlane geo-lsep: bc right-angle: Rabc geo-left: leftof bc geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q geo-out: out(p ab) member: t ∈ T guard: {T} not: ¬A false: False prop: uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a rev_implies:  Q geo-lsep: bc or: P ∨ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] basic-geometry: BasicGeometry basic-geometry-: BasicGeometry- oriented-plane: OrientedPlane
Lemmas referenced :  geo-sep-sym lsep-implies-sep not_wf geo-between_wf right-angle_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf iff_wf geo-left_wf geo-point_wf left-implies-sep all_wf geo-sep_wf lsep-all-sym right-angle-symmetry adjacent-right-angles geo-colinear_wf geo-colinear-symmetry geo-simple-colinear-cases stable__not geo-between-symmetry left-between left-all-symmetry not-left-and-right
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin independent_pairFormation cut introduction extract_by_obid dependent_functionElimination because_Cache independent_functionElimination hypothesisEquality hypothesis voidElimination productEquality isectElimination applyEquality sqequalRule instantiate independent_isectElimination unionElimination lambdaEquality functionEquality addLevel levelHypothesis

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,p1,p2:Point.
    (((Rbap1  \mwedge{}  Rbap2)  \mwedge{}  p1  \#  ab  \mwedge{}  (p1  leftof  ab  \mLeftarrow{}{}\mRightarrow{}  p2  leftof  ab)  \mwedge{}  (p1  leftof  ba  \mLeftarrow{}{}\mRightarrow{}  p2  leftof  ba))
    {}\mRightarrow{}  out(a  p1p2))



Date html generated: 2018_05_22-PM-00_18_25
Last ObjectModification: 2018_04_20-PM-06_31_00

Theory : euclidean!plane!geometry


Home Index