Nuprl Lemma : hp-right-angles-out
∀e:EuclideanPlane. ∀a,b,p1,p2:Point.
  (((Rbap1 ∧ Rbap2) ∧ p1 # ab ∧ (p1 leftof ab 
⇐⇒ p2 leftof ab) ∧ (p1 leftof ba 
⇐⇒ p2 leftof ba)) 
⇒ out(a p1p2))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
right-angle: Rabc
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
geo-out: out(p ab)
, 
member: t ∈ T
, 
guard: {T}
, 
not: ¬A
, 
false: False
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
basic-geometry: BasicGeometry
, 
basic-geometry-: BasicGeometry-
, 
oriented-plane: OrientedPlane
Lemmas referenced : 
geo-sep-sym, 
lsep-implies-sep, 
not_wf, 
geo-between_wf, 
right-angle_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-lsep_wf, 
iff_wf, 
geo-left_wf, 
geo-point_wf, 
left-implies-sep, 
all_wf, 
geo-sep_wf, 
lsep-all-sym, 
right-angle-symmetry, 
adjacent-right-angles, 
geo-colinear_wf, 
geo-colinear-symmetry, 
geo-simple-colinear-cases, 
stable__not, 
geo-between-symmetry, 
left-between, 
left-all-symmetry, 
not-left-and-right
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
because_Cache, 
independent_functionElimination, 
hypothesisEquality, 
hypothesis, 
voidElimination, 
productEquality, 
isectElimination, 
applyEquality, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
unionElimination, 
lambdaEquality, 
functionEquality, 
addLevel, 
levelHypothesis
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,p1,p2:Point.
    (((Rbap1  \mwedge{}  Rbap2)  \mwedge{}  p1  \#  ab  \mwedge{}  (p1  leftof  ab  \mLeftarrow{}{}\mRightarrow{}  p2  leftof  ab)  \mwedge{}  (p1  leftof  ba  \mLeftarrow{}{}\mRightarrow{}  p2  leftof  ba))
    {}\mRightarrow{}  out(a  p1p2))
Date html generated:
2018_05_22-PM-00_18_25
Last ObjectModification:
2018_04_20-PM-06_31_00
Theory : euclidean!plane!geometry
Home
Index