Nuprl Lemma : lsep-colinear

g:EuclideanPlane. ∀p,a,b,x,y:Point.  (p ab  x ≠  Colinear(x;a;b)  Colinear(y;a;b)  xy)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-lsep: bc geo-colinear: Colinear(a;b;c) geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B oriented-plane: OrientedPlane uall: [x:A]. B[x] subtype_rel: A ⊆B exists: x:A. B[x] or: P ∨ Q prop: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m uimplies: supposing a
Lemmas referenced :  lsep-iff-all-sep oriented-colinear-append cons_wf geo-point_wf nil_wf cons_member l_member_wf equal_wf geo-sep_wf exists_wf geo-colinear-is-colinear-set list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-colinear_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-lsep_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination independent_functionElimination sqequalRule isectElimination applyEquality because_Cache dependent_pairFormation independent_pairFormation inlFormation inrFormation productEquality lambdaEquality isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,a,b,x,y:Point.
    (p  \#  ab  {}\mRightarrow{}  x  \mneq{}  y  {}\mRightarrow{}  Colinear(x;a;b)  {}\mRightarrow{}  Colinear(y;a;b)  {}\mRightarrow{}  p  \#  xy)



Date html generated: 2018_05_22-PM-00_08_56
Last ObjectModification: 2018_04_04-PM-05_46_36

Theory : euclidean!plane!geometry


Home Index