Nuprl Lemma : lt-angle-irrefl

e:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (abc < xyz  xyz < abc))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a or: P ∨ Q stable: Stable{P} iff: ⇐⇒ Q and: P ∧ Q basic-geometry-: BasicGeometry- geo-lt-angle: abc < xyz exists: x:A. B[x] geo-cong-angle: abc ≅a xyz geo-eq: a ≡ b oriented-plane: OrientedPlane rev_implies:  Q
Lemmas referenced :  geo-lt-angle_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf stable__false false_wf geo-lsep_wf not_wf istype-void minimal-double-negation-hyp-elim not-lsep-iff-colinear minimal-not-not-excluded-middle lt-angle-not-cong geo-lt-angle-trans geo-colinear-cases geo-eq_wf geo-strict-between_wf not-lt-zero-angle geo-between_wf geo-between-trivial geo-colinear_functionality geo-eq_weakening geo-lsep_functionality geo-lt-angle_functionality geo-between_functionality straight-angles-not-lt2 geo-strict-between-implies-between geo-between-symmetry zero-angles-congruent geo-sep-sym lt-angle-not-cong2 straight-angles-not-lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin because_Cache hypothesis sqequalHypSubstitution independent_functionElimination voidElimination universeIsType introduction extract_by_obid dependent_functionElimination hypothesisEquality inhabitedIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule unionEquality functionEquality unionIsType functionIsType unionElimination productElimination inlFormation_alt inrFormation_alt

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (abc  <  xyz  {}\mRightarrow{}  (\mneg{}xyz  <  abc))



Date html generated: 2019_10_16-PM-02_02_27
Last ObjectModification: 2019_09_12-AM-11_41_08

Theory : euclidean!plane!geometry


Home Index