Nuprl Lemma : lt-angle-not-cong
∀e:EuclideanPlane. ∀x,y,z:Point.  (¬xyz < xyz)
Proof
Definitions occuring in Statement : 
geo-lt-angle: abc < xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
geo-lt-angle: abc < xyz
, 
exists: ∃x:A. B[x]
, 
geo-eq: a ≡ b
, 
cand: A c∧ B
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
geo-cong-angle: abc ≅a xyz
, 
basic-geometry: BasicGeometry
, 
uiff: uiff(P;Q)
, 
basic-geometry-: BasicGeometry-
, 
rev_implies: P 
⇐ Q
, 
geo-lsep: a # bc
, 
oriented-plane: OrientedPlane
, 
geo-out: out(p ab)
Lemmas referenced : 
geo-lt-angle_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
stable__not, 
false_wf, 
geo-lsep_wf, 
not_wf, 
istype-void, 
minimal-double-negation-hyp-elim, 
not-lsep-iff-colinear, 
minimal-not-not-excluded-middle, 
stable__false, 
geo-sep_wf, 
geo-sep_functionality, 
geo-eq_weakening, 
geo-between_functionality, 
out-preserves-lsep, 
lsep-all-sym, 
colinear-lsep-cycle, 
geo-colinear-is-colinear-set, 
geo-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
geo-between-symmetry, 
geo-congruent-iff-length, 
geo-length-flip, 
geo-congruent-refl, 
geo-construction-unicity, 
geo-sep-sym, 
lsep-implies-sep, 
geo-inner-three-segment, 
geo-left_wf, 
geo-congruent_functionality, 
left-convex2, 
geo-between_wf, 
left-convex, 
geo-out_transitivity, 
geo-between-out, 
geo-between-sep, 
geo-out_inversion, 
colinear-lsep, 
geo-left-out-1, 
geo-left-out-3, 
Euclid-Prop7, 
geo-left-out, 
geo-left-out-2, 
geo-out_wf, 
geo-out_functionality, 
geo-cong-angle_functionality, 
geo-lsep_functionality, 
out-preserves-angle-cong_1, 
geo-zero-angle-congruence-out, 
geo-colinear-cases, 
geo-eq_wf, 
geo-strict-between_wf, 
euclidean-plane-axioms, 
geo-between-trivial, 
not-lt-zero-angle, 
straight-angles-not-lt, 
geo-strict-between-implies-between
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
thin, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
inhabitedIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
unionEquality, 
because_Cache, 
functionEquality, 
functionIsType, 
unionIsType, 
unionElimination, 
productElimination, 
isect_memberEquality_alt, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
productIsType, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation_alt, 
inrFormation_alt, 
promote_hyp
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}x,y,z:Point.    (\mneg{}xyz  <  xyz)
Date html generated:
2019_10_16-PM-01_49_58
Last ObjectModification:
2019_09_27-PM-06_02_58
Theory : euclidean!plane!geometry
Home
Index