Nuprl Lemma : perp-aux-separations

e:HeytingGeometry. ∀a,b,c,x,c1,c',p:Point.
  ((((c ba ∧ ab  ⊥cx) ∧ a ≠ x)
  ∧ ((c=a=c1 ∧ c=x=c') ∧ c'a ≅ ca)
  ∧ c' c1a
  ∧ ((a cc' ∧ c1=p=c') ∧ ab  ⊥pa)
  ∧ ab)
   ((c' ≠ c1 ∧ c ≠ x ∧ (c' ≠ x ∧ c1 ≠ p) ∧ c' ≠ p ∧ c ≠ c1) ∧ c'c1))


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-perp-in: ab  ⊥cd geo-midpoint: a=m=b geo-congruent: ab ≅ cd geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T guard: {T} subtype_rel: A ⊆B heyting-geometry: HeytingGeometry euclidean-plane: EuclideanPlane basic-geometry: BasicGeometry uall: [x:A]. B[x] prop: geo-midpoint: a=m=b uimplies: supposing a geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  geo-triangle-property midpoint-sep subtype_rel_self euclidean-plane-structure_wf basic-geo-axioms_wf euclidean-plane-structure-subtype geo-left-axioms_wf geo-sep-sym geo-between-sep geo-triangle-colinear geo-triangle-symmetry geo-colinear-is-colinear-set geo-between-implies-colinear length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf geo-triangle_wf euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf geo-primitives_wf geo-perp-in_wf geo-sep_wf geo-midpoint_wf geo-congruent_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis independent_pairFormation applyEquality sqequalRule instantiate isectElimination setEquality productEquality cumulativity because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,x,c1,c',p:Point.
    ((((c  \#  ba  \mwedge{}  ab    \mbot{}x  cx)  \mwedge{}  a  \mneq{}  x)
    \mwedge{}  ((c=a=c1  \mwedge{}  c=x=c')  \mwedge{}  c'a  \00D0  ca)
    \mwedge{}  c'  \#  c1a
    \mwedge{}  ((a  \#  cc'  \mwedge{}  c1=p=c')  \mwedge{}  ab    \mbot{}a  pa)
    \mwedge{}  p  \#  ab)
    {}\mRightarrow{}  ((c'  \mneq{}  c1  \mwedge{}  c  \mneq{}  x  \mwedge{}  (c'  \mneq{}  x  \mwedge{}  c1  \mneq{}  p)  \mwedge{}  c'  \mneq{}  p  \mwedge{}  c  \mneq{}  c1)  \mwedge{}  c  \#  c'c1))



Date html generated: 2017_10_02-PM-07_07_54
Last ObjectModification: 2017_08_16-AM-11_04_52

Theory : euclidean!plane!geometry


Home Index