Nuprl Lemma : proj-sep_antireflexive

[n:ℕ]. ∀[a:ℙ^n].  a ≠ a)


Proof




Definitions occuring in Statement :  proj-sep: a ≠ b real-proj: ^n nat: uall: [x:A]. B[x] not: ¬A
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False proj-sep: a ≠ b and: P ∧ Q nat: real-vec-sep: a ≠ b rless: x < y sq_exists: x:{A| B[x]} subtype_rel: A ⊆B real: nat_plus: + ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: sq_stable: SqStable(P) squash: T guard: {T}
Lemmas referenced :  not-real-vec-sep-refl sq_stable__less_than int-to-real_wf real_wf real-vec-dist_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf punit_wf real-vec_wf req_wf real-vec-norm_wf real-vec-mul_wf proj-sep_wf real-proj_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution productElimination extract_by_obid isectElimination dependent_set_memberEquality addEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality applyEquality lambdaEquality sqequalRule because_Cache dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation setEquality imageMemberEquality baseClosed imageElimination equalityTransitivity equalitySymmetry minusEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[a:\mBbbP{}\^{}n].    (\mneg{}a  \mneq{}  a)



Date html generated: 2017_10_05-AM-00_17_35
Last ObjectModification: 2017_06_18-PM-02_06_32

Theory : inner!product!spaces


Home Index