Nuprl Lemma : rv-isometry-id

[rv:InnerProductSpace]. Isometry(λx.x)


Proof




Definitions occuring in Statement :  rv-isometry: Isometry(f) inner-product-space: InnerProductSpace uall: [x:A]. B[x] lambda: λx.A[x]
Definitions unfolded in proof :  uimplies: supposing a guard: {T} implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B rv-isometry: Isometry(f) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req_weakening separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity real-vector-space_subtype1 ss-point_wf rv-ip_wf rmul_wf req_wf int-to-real_wf rleq_wf real_wf inner-product-space_subtype rv-sub_wf rv-norm_wf req_witness
Rules used in proof :  independent_isectElimination instantiate independent_functionElimination natural_numberEquality productEquality setEquality rename setElimination lambdaEquality because_Cache hypothesis applyEquality extract_by_obid hypothesisEquality thin isectElimination isect_memberEquality sqequalHypSubstitution sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  Isometry(\mlambda{}x.x)



Date html generated: 2016_11_08-AM-09_20_35
Last ObjectModification: 2016_11_02-PM-11_44_33

Theory : inner!product!spaces


Home Index