Nuprl Lemma : rv-mul-sep-iff

rv:InnerProductSpace. ∀a,b:ℝ. ∀y:Point.  (a*y b*y ⇐⇒ a ≠ b ∧ 0)


Proof




Definitions occuring in Statement :  inner-product-space: InnerProductSpace rv-mul: a*x rv-0: 0 rneq: x ≠ y real: ss-sep: y ss-point: Point all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T subtype_rel: A ⊆B prop: uall: [x:A]. B[x] guard: {T} uimplies: supposing a rev_implies:  Q cand: c∧ B
Lemmas referenced :  rv-mul-sep1 inner-product-space_subtype ss-sep_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-mul_wf rneq_wf rv-0_wf ss-point_wf real_wf rv-sep-iff rv-sub_wf rsub_wf ss-sep_functionality ss-eq_inversion rv-mul-sub ss-eq_weakening rv-mul-sep-zero rneq-iff-rabs
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality applyEquality hypothesis sqequalRule independent_functionElimination because_Cache isectElimination instantiate independent_isectElimination productElimination productEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:\mBbbR{}.  \mforall{}y:Point.    (a*y  \#  b*y  \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b  \mwedge{}  y  \#  0)



Date html generated: 2017_10_04-PM-11_51_55
Last ObjectModification: 2017_06_26-PM-09_11_10

Theory : inner!product!spaces


Home Index