Nuprl Lemma : rv-mul-sep-iff
∀rv:InnerProductSpace. ∀a,b:ℝ. ∀y:Point.  (a*y # b*y 
⇐⇒ a ≠ b ∧ y # 0)
Proof
Definitions occuring in Statement : 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-0: 0
, 
rneq: x ≠ y
, 
real: ℝ
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
Lemmas referenced : 
rv-mul-sep1, 
inner-product-space_subtype, 
ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
rv-mul_wf, 
rneq_wf, 
rv-0_wf, 
ss-point_wf, 
real_wf, 
rv-sep-iff, 
rv-sub_wf, 
rsub_wf, 
ss-sep_functionality, 
ss-eq_inversion, 
rv-mul-sub, 
ss-eq_weakening, 
rv-mul-sep-zero, 
rneq-iff-rabs
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
instantiate, 
independent_isectElimination, 
productElimination, 
productEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b:\mBbbR{}.  \mforall{}y:Point.    (a*y  \#  b*y  \mLeftarrow{}{}\mRightarrow{}  a  \mneq{}  b  \mwedge{}  y  \#  0)
Date html generated:
2017_10_04-PM-11_51_55
Last ObjectModification:
2017_06_26-PM-09_11_10
Theory : inner!product!spaces
Home
Index