Nuprl Lemma : rv-mul-sep-zero

rv:InnerProductSpace. ∀t:ℝ. ∀x:Point.  (t*x ⇐⇒ 0 ∧ (r0 < |t|))


Proof




Definitions occuring in Statement :  inner-product-space: InnerProductSpace rv-mul: a*x rv-0: 0 rless: x < y rabs: |x| int-to-real: r(n) real: ss-sep: y ss-point: Point all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B rev_implies:  Q prop: guard: {T} uimplies: supposing a or: P ∨ Q false: False cand: c∧ B
Lemmas referenced :  zero-rleq-rabs rv-norm-positive-iff rv-mul_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf rv-0_wf rless_wf int-to-real_wf rabs_wf ss-point_wf real_wf rv-norm_wf rleq_wf req_wf rmul_wf rv-ip_wf rmul-is-positive rless_transitivity1 rless_irreflexivity rless_transitivity2 rless_functionality req_weakening rv-norm-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination applyEquality because_Cache sqequalRule productElimination independent_functionElimination instantiate independent_isectElimination productEquality natural_numberEquality lambdaEquality setElimination rename setEquality unionElimination voidElimination inlFormation

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}t:\mBbbR{}.  \mforall{}x:Point.    (t*x  \#  0  \mLeftarrow{}{}\mRightarrow{}  x  \#  0  \mwedge{}  (r0  <  |t|))



Date html generated: 2017_10_04-PM-11_51_51
Last ObjectModification: 2017_06_26-PM-09_10_12

Theory : inner!product!spaces


Home Index