Nuprl Lemma : separable-kernel_wf

[rv:InnerProductSpace]. ∀[e:Point]. ∀[f:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ].  (separable-kernel(rv;e;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  separable-kernel: separable-kernel(rv;e;f) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T separable-kernel: separable-kernel(rv;e;f) so_lambda: λ2x.t[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: all: x:A. B[x] so_apply: x[s]
Lemmas referenced :  exists_wf real_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf rv-ip_wf int-to-real_wf all_wf rmul_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality hypothesis because_Cache lambdaEquality setEquality hypothesisEquality applyEquality instantiate independent_isectElimination natural_numberEquality lambdaFormation setElimination rename functionExtensionality dependent_set_memberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[f:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}].
    (separable-kernel(rv;e;f)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_23_41
Last ObjectModification: 2017_07_01-PM-09_16_16

Theory : inner!product!spaces


Home Index