Nuprl Lemma : separable-translation-group_wf
∀[rv:InnerProductSpace]. ∀[e:Point]. ∀[T:ℝ ⟶ Point ⟶ Point].  (separable-translation-group(rv;e;T) ∈ ℙ)
Proof
Definitions occuring in Statement : 
separable-translation-group: separable-translation-group(rv;e;T)
, 
inner-product-space: InnerProductSpace
, 
real: ℝ
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
separable-translation-group: separable-translation-group(rv;e;T)
, 
prop: ℙ
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
translation-group-fun_wf, 
real_wf, 
separable-kernel_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
ss-point_wf, 
trans-kernel_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
isectElimination, 
because_Cache, 
lambdaEquality, 
lambdaFormation, 
natural_numberEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
setEquality, 
instantiate, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point].
    (separable-translation-group(rv;e;T)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_26_00
Last ObjectModification:
2017_07_01-PM-10_23_42
Theory : inner!product!spaces
Home
Index