Nuprl Lemma : trans-kernel-fun_wf

[rv:InnerProductSpace]. ∀[e:Point]. ∀[f:{h:Point| h ⋅ r0}  ⟶ ℝ ⟶ ℝ].  (trans-kernel-fun(rv;e;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  trans-kernel-fun: trans-kernel-fun(rv;e;f) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point uall: [x:A]. B[x] prop: member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T trans-kernel-fun: trans-kernel-fun(rv;e;f) prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] all: x:A. B[x] so_apply: x[s] implies:  Q exists: x:A. B[x]
Lemmas referenced :  all_wf ss-point_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf req_wf rv-ip_wf int-to-real_wf real_wf rless_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination natural_numberEquality lambdaEquality lambdaFormation because_Cache setElimination rename functionExtensionality dependent_set_memberEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[f:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}].
    (trans-kernel-fun(rv;e;f)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_05-AM-00_22_55
Last ObjectModification: 2017_06_26-PM-00_58_01

Theory : inner!product!spaces


Home Index