Nuprl Lemma : trans-kernel-fun_wf
∀[rv:InnerProductSpace]. ∀[e:Point]. ∀[f:{h:Point| h ⋅ e = r0}  ⟶ ℝ ⟶ ℝ].  (trans-kernel-fun(rv;e;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
all_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
real_wf, 
rless_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
natural_numberEquality, 
lambdaEquality, 
lambdaFormation, 
because_Cache, 
setElimination, 
rename, 
functionExtensionality, 
dependent_set_memberEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e:Point].  \mforall{}[f:\{h:Point|  h  \mcdot{}  e  =  r0\}    {}\mrightarrow{}  \mBbbR{}  {}\mrightarrow{}  \mBbbR{}].
    (trans-kernel-fun(rv;e;f)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_05-AM-00_22_55
Last ObjectModification:
2017_06_26-PM-00_58_01
Theory : inner!product!spaces
Home
Index