Nuprl Lemma : assert-lattice-bless

[l:LatticeStructure]. ∀[eq:EqDecider(Point(l))]. ∀[a,b:Point(l)].  uiff(↑lattice-bless(l;eq;a;b);a < b)


Proof




Definitions occuring in Statement :  lattice-bless: lattice-bless(l;eq;a;b) lattice-less: a < b lattice-point: Point(l) lattice-structure: LatticeStructure deq: EqDecider(T) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x]
Definitions unfolded in proof :  lattice-less: a < b lattice-bless: lattice-bless(l;eq;a;b) member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a band: p ∧b q ifthenelse: if then else fi  deq: EqDecider(T) eqof: eqof(d) bnot: ¬bb assert: b bfalse: ff false: False lattice-le: a ≤ b not: ¬A prop: exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} true: True
Lemmas referenced :  lattice-ble_wf bool_wf eqtt_to_assert assert-lattice-ble safe-assert-deq false_wf lattice-le_wf not_wf equal_wf lattice-point_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot true_wf assert_wf lattice-bless_wf lattice-less_wf deq_wf lattice-structure_wf assert_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule applyEquality setElimination rename because_Cache independent_pairFormation isect_memberFormation voidElimination independent_pairEquality axiomEquality lambdaEquality dependent_functionElimination independent_functionElimination productEquality dependent_pairFormation promote_hyp instantiate cumulativity natural_numberEquality isect_memberEquality

Latex:
\mforall{}[l:LatticeStructure].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[a,b:Point(l)].
    uiff(\muparrow{}lattice-bless(l;eq;a;b);a  <  b)



Date html generated: 2017_10_05-AM-00_33_26
Last ObjectModification: 2017_07_28-AM-09_13_47

Theory : lattices


Home Index