Nuprl Lemma : psc-fstfst_wf
∀[C:SmallCategory]. ∀[Gamma:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}].
  (pp ∈ psc_map{[i | j]:l}(C; Gamma.A.B; Gamma))
Proof
Definitions occuring in Statement : 
psc-fstfst: pp
, 
psc-adjoin: X.A
, 
presheaf-type: {X ⊢ _}
, 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
psc-fstfst: pp
, 
subtype_rel: A ⊆r B
, 
psc-adjoin: X.A
, 
all: ∀x:A. B[x]
, 
pi1: fst(t)
, 
psc-restriction: f(s)
, 
pi2: snd(t)
Lemmas referenced : 
psc-map-is, 
psc-adjoin_wf, 
ps_context_cumulativity2, 
presheaf-type-cumulativity2, 
presheaf-type_wf, 
small-category-cumulativity-2, 
ps_context_wf, 
small-category_wf, 
pi1_wf_top, 
I_set_wf, 
top_wf, 
I_set_pair_redex_lemma, 
cat-ob_wf, 
cat-arrow_wf, 
psc_restriction_pair_lemma, 
psc-restriction_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
dependent_set_memberEquality_alt, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
Error :memTop, 
productElimination, 
independent_pairEquality, 
lambdaFormation_alt, 
functionIsType, 
equalityIstype
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].
    (pp  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  Gamma.A.B;  Gamma))
Date html generated:
2020_05_20-PM-01_27_31
Last ObjectModification:
2020_04_03-AM-11_58_38
Theory : presheaf!models!of!type!theory
Home
Index