Nuprl Lemma : pscm-adjoin-p-q

[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  ((B)(p;q) B ∈ {X.A ⊢ _})


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-snd: q psc-fst: p psc-adjoin: X.A pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} ps_context: __⊢ uall: [x:A]. B[x] equal: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf istype-universe presheaf-type_wf psc-adjoin_wf small-category-cumulativity-2 ps_context_cumulativity2 presheaf-type-cumulativity2 pscm-ap-type-is-id pscm-adjoin_wf psc-fst_wf psc-snd_wf pscm-adjoin-fst-snd subtype_rel_self iff_weakening_equal ps_context_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut applyEquality thin instantiate lambdaEquality_alt sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType universeEquality sqequalRule because_Cache independent_isectElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination isect_memberEquality_alt axiomEquality isectIsTypeImplies inhabitedIsType

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].    ((B)(p;q)  =  B)



Date html generated: 2020_05_20-PM-01_28_34
Last ObjectModification: 2020_04_02-PM-01_56_17

Theory : presheaf!models!of!type!theory


Home Index