Nuprl Lemma : in-compatible-cubes
∀k:ℕ. ∀c,d:ℚCube(k).
  (Compatible(c;d)
  ⇒ (∀p:ℝ^k. (in-rat-cube(k;p;c) ⇒ in-rat-cube(k;p;d) ⇒ (∃f:ℚCube(k). (f ≤ c ∧ f ≤ d ∧ in-rat-cube(k;p;f))))))
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c), 
real-vec: ℝ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
compatible-rat-cubes: Compatible(c;d), 
rat-cube-face: c ≤ d, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
nat: ℕ, 
pi2: snd(t), 
pi1: fst(t), 
rat-interval-intersection: I ⋂ J, 
rational-interval: ℚInterval, 
rational-cube: ℚCube(k), 
real-vec: ℝ^n, 
rat-cube-intersection: c ⋂ d, 
in-rat-cube: in-rat-cube(k;p;c), 
cand: A c∧ B, 
prop: ℙ, 
exists: ∃x:A. B[x], 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
compatible-rat-cubes: Compatible(c;d), 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
rat2real-qmin, 
req_weakening, 
rat2real-qmax, 
rleq_functionality, 
rmin_ub, 
rmax_lb, 
iff_weakening_uiff, 
rmin_wf, 
qmin_wf, 
qmax_wf, 
rmax_wf, 
rat2real_wf, 
rleq_wf, 
int_seg_wf, 
istype-nat, 
rational-cube_wf, 
compatible-rat-cubes_wf, 
real-vec_wf, 
rat-cube-face_wf, 
in-rat-cube_wf, 
rat-cube-intersection_wf, 
inhabited-iff-in-rat-cube
Rules used in proof : 
independent_isectElimination, 
promote_hyp, 
because_Cache, 
productEquality, 
rename, 
setElimination, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
applyEquality, 
inhabitedIsType, 
productIsType, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
dependent_pairFormation_alt, 
productElimination, 
hypothesis, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
thin, 
independent_functionElimination, 
sqequalHypSubstitution, 
cut, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}c,d:\mBbbQ{}Cube(k).
    (Compatible(c;d)
    {}\mRightarrow{}  (\mforall{}p:\mBbbR{}\^{}k
                (in-rat-cube(k;p;c)
                {}\mRightarrow{}  in-rat-cube(k;p;d)
                {}\mRightarrow{}  (\mexists{}f:\mBbbQ{}Cube(k).  (f  \mleq{}  c  \mwedge{}  f  \mleq{}  d  \mwedge{}  in-rat-cube(k;p;f))))))
Date html generated:
2019_10_31-AM-06_03_32
Last ObjectModification:
2019_10_30-PM-07_01_25
Theory : real!vectors
Home
Index