Nuprl Lemma : meq-in-0-dim-cube
∀[k:ℕ]. ∀[c:ℚCube(k)].  ∀[p,q:ℝ^k].  (p ≡ q) supposing (in-rat-cube(k;q;c) and in-rat-cube(k;p;c)) supposing dim(c) = 0 \000C∈ ℤ
Proof
Definitions occuring in Statement : 
in-rat-cube: in-rat-cube(k;p;c), 
rn-prod-metric: rn-prod-metric(n), 
real-vec: ℝ^n, 
meq: x ≡ y, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T, 
rat-cube-dimension: dim(c), 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
prop: ℙ, 
pi1: fst(t), 
rational-interval: ℚInterval, 
all: ∀x:A. B[x], 
rational-cube: ℚCube(k), 
real-vec: ℝ^n, 
so_apply: x[s], 
nat: ℕ, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
implies: P ⇒ Q, 
metric: metric(X), 
subtype_rel: A ⊆r B, 
meq: x ≡ y, 
uimplies: b supposing a, 
member: t ∈ T, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req-vec_weakening, 
req-vec_functionality, 
meq-rn-prod-metric, 
in-rat-cube_wf, 
iff_weakening_uiff, 
real-vec_wf, 
int_seg_wf, 
rat2real_wf, 
req-vec_wf, 
istype-nat, 
rational-cube_wf, 
int_subtype_base, 
lelt_wf, 
set_subtype_base, 
rat-cube-dimension_wf, 
istype-int, 
int-to-real_wf, 
rn-prod-metric_wf, 
req_witness, 
in-0-dim-cube
Rules used in proof : 
because_Cache, 
dependent_functionElimination, 
productElimination, 
lambdaFormation_alt, 
universeIsType, 
sqequalBase, 
baseClosed, 
addEquality, 
minusEquality, 
intEquality, 
equalityIstype, 
isectIsTypeImplies, 
independent_functionElimination, 
natural_numberEquality, 
equalitySymmetry, 
equalityTransitivity, 
inhabitedIsType, 
rename, 
setElimination, 
lambdaEquality_alt, 
applyEquality, 
isect_memberEquality_alt, 
sqequalRule, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[c:\mBbbQ{}Cube(k)].
    \mforall{}[p,q:\mBbbR{}\^{}k].    (p  \mequiv{}  q)  supposing  (in-rat-cube(k;q;c)  and  in-rat-cube(k;p;c))  supposing  dim(c)  =  0
Date html generated:
2019_10_30-AM-10_12_56
Last ObjectModification:
2019_10_29-PM-03_03_59
Theory : real!vectors
Home
Index